These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 18576080)

  • 21. Glucose-fructose oxidoreductase, a periplasmic enzyme of Zymomonas mobilis, is active in its precursor form.
    Loos H; Sahm H; Sprenger GA
    FEMS Microbiol Lett; 1993 Mar; 107(2-3):293-8. PubMed ID: 8472911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of glucose-fructose oxidoreductase activity in whole cells of Zymomonas mobilis.
    Erzinger GS; Silveira MM; Vitolo M; Jonas R
    World J Microbiol Biotechnol; 1996 Jan; 12(1):22-4. PubMed ID: 24415081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis.
    Severo JB; Pinto JC; Ferraz HC; Alves TL
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1575-85. PubMed ID: 21328074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous saccharification of inulin and starch using commercial glucoamylase and the subsequent bioconversion to high titer sorbitol and gluconic acid.
    An K; Hu F; Bao J
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2093-104. PubMed ID: 24026410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new biosensor for specific determination of sucrose using an oxidoreductase of Zymomonas mobilis and invertase.
    Park JK; Ro HS; Kim HS
    Biotechnol Bioeng; 1991 Jul; 38(3):217-23. PubMed ID: 18600754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structures of the precursor form of glucose-fructose oxidoreductase from Zymomonas mobilis and its complexes with bound ligands.
    Nurizzo D; Halbig D; Sprenger GA; Baker EN
    Biochemistry; 2001 Nov; 40(46):13857-67. PubMed ID: 11705375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multistep process is responsible for product-induced inactivation of glucose-fructose oxidoreductase from Zymomonas mobilis.
    Fürlinger M; Haltrich D; Kulbe KD; Nidetzky B
    Eur J Biochem; 1998 Feb; 251(3):955-63. PubMed ID: 9490072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium, potassium, calcium lactobionates, and lactobionic acid from Zymomonas mobilis: A novel approach about stability and stress tests.
    Delagustin MG; Gonçalves E; Carra S; Barcellos T; Link Bassani V; da Silveira MM; Malvessi E
    J Pharm Biomed Anal; 2019 Sep; 174():104-114. PubMed ID: 31163344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic conversion of sucrose to hydrogen.
    Woodward J; Orr M
    Biotechnol Prog; 1998 Nov; 14(6):897-902. PubMed ID: 9841653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sorbitol can be produced not only chemically but also biotechnologically.
    Jonas R; Silveira MM
    Appl Biochem Biotechnol; 2004; 118(1-3):321-36. PubMed ID: 15304760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The kinetics of glucose-fructose oxidoreductase from Zymomonas mobilis.
    Hardman MJ; Scopes RK
    Eur J Biochem; 1988 Apr; 173(1):203-9. PubMed ID: 3356190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A model system for a fluorometric biosensor using permeabilized Zymomonas mobilis or enzymes with protein confined dinucleotides.
    Thordsen O; Lee SJ; Degelau A; Scheper T; Loos H; Rehr B; Sahm H
    Biotechnol Bioeng; 1993 Jul; 42(3):387-93. PubMed ID: 18613024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinant Zymomonas.
    Lawford HG; Rousseau JD; McMillan JD
    Appl Biochem Biotechnol; 1997; 63-65():269-86. PubMed ID: 18576087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaction engineering aspects of alpha-l,4-D-glucan phosphorylase catalysis : comparison of plant and bacterial enzymes for the continuous synthesis of D-glucose-1-phosphate.
    Nidetzky B; Griessler R; Weinhäusel A; Haltrich D; Kulbe KD
    Appl Biochem Biotechnol; 1997; 63-65():159-72. PubMed ID: 18576079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of L-sorbitol from L-fructose by Aureobasidium pullulans LP23 isolated from soy sauce mash.
    Sasahara H; Izumori K
    J Biosci Bioeng; 2005 Aug; 100(2):223-6. PubMed ID: 16198270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Separative Bioreactor: A Continuous Separation Process for the Simultaneous Production and Direct Capture of Organic Acids.
    Arora MB; Hestekin JA; Snyder SW; St Martin EJ; Lin YJ; Donnelly MI; Millard CS
    Sep Sci Technol; 2007 Aug; 42(11):2519-2538. PubMed ID: 23723533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manganese (Mn2+)-dependent storage stabilization of Rhodotorula glutinis phenylalanine ammonia-lyase activity.
    Wall MJ; Quinn AJ; D'Cunha GB
    J Agric Food Chem; 2008 Feb; 56(3):894-902. PubMed ID: 18193835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains.
    Budhavaram NK; Fan Z
    Bioresour Technol; 2009 Dec; 100(23):5966-72. PubMed ID: 19577925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced levan production using chitin-binding domain fused levansucrase immobilized on chitin beads.
    Chiang CJ; Wang JY; Chen PT; Chao YP
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):445-51. PubMed ID: 19018526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of L-phenylacetylcarbinol (L-PAC) from benzaldehyde using partially purified pyruvate decarboxylase (PDC).
    Shin HS; Rogers PL
    Biotechnol Bioeng; 1996 Jan; 49(1):52-62. PubMed ID: 18623553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.