BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18576081)

  • 1. Production of hemicellulose- and cellulose-degrading enzymes by various strains of Sclerotium rolfsii.
    Sachslehner A; Haltrich D; Nidetzky B; Kulbe KD
    Appl Biochem Biotechnol; 1997; 63-65():189-201. PubMed ID: 18576081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient production of mannan-degrading enzymes by the basidiomycete Sclerotium rolfsii.
    Sachslehner A; Haltrich D; Gübitz G; Nidetzky B; Kulbe KD
    Appl Biochem Biotechnol; 1998; 70-72():939-53. PubMed ID: 9627405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of Mannanase, Xylanase, and Endoglucanase Activities in Sclerotium rolfsii.
    Sachslehner A; Nidetzky B; Kulbe KD; Haltrich D
    Appl Environ Microbiol; 1998 Feb; 64(2):594-600. PubMed ID: 16349502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of carbohydrases by Sclerotium rolfsii.
    Deshpade BS; Ambedkar SS; Channe PS; Shewale JG
    Hindustan Antibiot Bull; 1992; 34(3-4):95-9. PubMed ID: 1289302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening for distinct xylan degrading enzymes in complex shake flask fermentation supernatants.
    Van Gool MP; Vancsó I; Schols HA; Toth K; Szakacs G; Gruppen H
    Bioresour Technol; 2011 May; 102(10):6039-47. PubMed ID: 21440435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological Control of Sclerotium rolfsii and Verticillium dahliae by Talaromyces flavus Is Mediated by Different Mechanisms.
    Madi L; Katan T; Katan J; Henis Y
    Phytopathology; 1997 Oct; 87(10):1054-60. PubMed ID: 18945040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of mannan structure and mannan-degrading enzyme systems.
    Moreira LR; Filho EX
    Appl Microbiol Biotechnol; 2008 May; 79(2):165-78. PubMed ID: 18385995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Features of Fibrobacter intestinalis DR7 mutant which is impaired with its ability to adhere to cellulose.
    Miron J; Forsberg CW
    Anaerobe; 1998 Feb; 4(1):35-43. PubMed ID: 16887622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimisation of cellobiose dehydrogenase production by the fungus Sclerotium (Athelia) rolfsii.
    Ludwig R; Haltrich D
    Appl Microbiol Biotechnol; 2003 Mar; 61(1):32-9. PubMed ID: 12658512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungi from koala (Phascolarctos cinereus) faeces exhibit a broad range of enzyme activities against recalcitrant substrates.
    Peterson RA; Bradner JR; Roberts TH; Nevalainen KM
    Lett Appl Microbiol; 2009 Feb; 48(2):218-25. PubMed ID: 19141036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconversion of hemicellulose: aspects of hemicellulase production by Trichoderma reesei QM 9414 and enzymic saccharification of hemicellulose.
    Dekker RF
    Biotechnol Bioeng; 1983 Apr; 25(4):1127-46. PubMed ID: 18548724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospection of Fungal Lignocellulolytic Enzymes Produced from Jatoba (
    Contato AG; de Oliveira TB; Aranha GM; de Freitas EN; Vici AC; Nogueira KMV; de Lucas RC; Scarcella ASA; Buckeridge MS; Silva RN; Polizeli MLTM
    Microorganisms; 2021 Mar; 9(3):. PubMed ID: 33807631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii.
    Mukherjee PK; Raghu K
    Mycopathologia; 1997; 139(3):151-5. PubMed ID: 16283454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome analysis of cellulose and hemicellulose degrading
    Chen SJ; Lam MQ; Thevarajoo S; Abd Manan F; Yahya A; Chong CS
    3 Biotech; 2020 Apr; 10(4):160. PubMed ID: 32206494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of beta-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp.
    Kumar KS; Manimaran A; Permaul K; Singh S
    J Biosci Bioeng; 2009 May; 107(5):494-8. PubMed ID: 19393546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability in Indian isolates of Sclerotium rolfsii.
    Sarma BK; Singh UP; Singh KP
    Mycologia; 2002; 94(6):1051-8. PubMed ID: 21156576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exocellular β-mannanases from hemicellulolytic fungi.
    Johnson KG
    World J Microbiol Biotechnol; 1990 Jun; 6(2):209-17. PubMed ID: 24429995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Variability Within and Among Mycelial Compatibility Groups of Sclerotium rolfsii in South Africa.
    Cilliers AJ; Herselman L; Pretorius ZA
    Phytopathology; 2000 Sep; 90(9):1026-31. PubMed ID: 18944529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Resistance to Sclerotium rolfsii in Populations of Alfalfa Selected for Quantitative Resistance to Sclerotinia trifoliorum.
    Pratt RG; Rowe DE
    Phytopathology; 2002 Feb; 92(2):204-9. PubMed ID: 18943095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Cellulase and xylanase activities of Fusarium Lk:Fr. genus fungi of different trophic groups].
    Kurchenko IM; Sokolova OV; Zhdanova NM; Iarynchyn AM; Iovenko OM
    Mikrobiol Z; 2008; 70(5):27-35. PubMed ID: 19140418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.