These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 18576373)

  • 1. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography.
    Boyer RF; Allen TL; Dykema PA
    Biotechnol Bioeng; 1987 Feb; 29(2):176-9. PubMed ID: 18576373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of cellulose fibrils on solid substrates for cellulase-binding studies through quantitative fluorescence microscopy.
    Moran-Mirabal JM; Santhanam N; Corgie SC; Craighead HG; Walker LP
    Biotechnol Bioeng; 2008 Dec; 101(6):1129-41. PubMed ID: 18563846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The antimicrobial reagent role on the degradation of model cellulose film.
    Jausovec D; Angelescu D; Voncina B; Nylander T; Lindman B
    J Colloid Interface Sci; 2008 Nov; 327(1):75-83. PubMed ID: 18752805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chemical modification of cellulose on the activity of a cellulase from Aspergillus niger.
    Boyer RF; Redmond MA
    Biotechnol Bioeng; 1983 May; 25(5):1311-9. PubMed ID: 18548761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes.
    Fendri I; Tardif C; Fierobe HP; Lignon S; Valette O; Pagès S; Perret S
    FEBS J; 2009 Jun; 276(11):3076-86. PubMed ID: 19490109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenesis and genotypic characterization of Aspergillus niger FCBP-02 for improvement in cellulolytic potential.
    Shafique S; Bajwa R; Shafique S
    Nat Prod Commun; 2009 Apr; 4(4):557-62. PubMed ID: 19476005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulase production from Aspergillus niger MS82: effect of temperature and pH.
    Sohail M; Siddiqi R; Ahmad A; Khan SA
    N Biotechnol; 2009 Sep; 25(6):437-41. PubMed ID: 19552887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of cellulase with cationic surfactants: using surfactant membrane selective electrodes and fluorescence spectroscopy.
    Rastegari AA; Bordbar AK; Taheri-Kafrani A
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):132-9. PubMed ID: 19505807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity.
    Caspi J; Irwin D; Lamed R; Li Y; Fierobe HP; Wilson DB; Bayer EA
    J Biotechnol; 2008 Jul; 135(4):351-7. PubMed ID: 18582975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching.
    Betini JH; Michelin M; Peixoto-Nogueira SC; Jorge JA; Terenzi HF; Polizeli ML
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):819-24. PubMed ID: 19271244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase.
    Singh R; Varma AJ; Seeta Laxman R; Rao M
    Bioresour Technol; 2009 Dec; 100(24):6679-81. PubMed ID: 19683917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.
    Ou MS; Mohammed N; Ingram LO; Shanmugam KT
    Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces.
    Szijártó N; Siika-Aho M; Tenkanen M; Alapuranen M; Vehmaanperä J; Réczey K; Viikari L
    J Biotechnol; 2008 Sep; 136(3-4):140-7. PubMed ID: 18635283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractionation of beta-Lactoglobulin from whey by mixed matrix membrane ion exchange chromatography.
    Saufi SM; Fee CJ
    Biotechnol Bioeng; 2009 May; 103(1):138-47. PubMed ID: 19199353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified Simons' staining technique.
    Chandra R; Ewanick S; Hsieh C; Saddler JN
    Biotechnol Prog; 2008; 24(5):1178-85. PubMed ID: 19194930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterisation of endo-beta-1,4-glucanase and laminarinase enzymes from the gecarcinid land crab Gecarcoidea natalis and the aquatic crayfish Cherax destructor.
    Allardyce BJ; Linton SM
    J Exp Biol; 2008 Jul; 211(Pt 14):2275-87. PubMed ID: 18587122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cellulase production in mutants of Thermomonospora curvata.
    Fennington G; Lupo D; Stutzenberger F
    Biotechnol Bioeng; 1982 Nov; 24(11):2487-97. PubMed ID: 18546218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell.
    Rezaei F; Richard TL; Logan BE
    Biotechnol Bioeng; 2008 Dec; 101(6):1163-9. PubMed ID: 18683248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of cellulolytic and hemicellulolytic enzymes on inorganic supports.
    Shimizu K; Ishihara M
    Biotechnol Bioeng; 1987 Feb; 29(2):236-41. PubMed ID: 18576381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma protein fractionation with advanced membrane adsorbents.
    Gebauer KH; Thömmes J; Kula MR
    Biotechnol Bioeng; 1997 Apr; 54(2):181-9. PubMed ID: 18634085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.