These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 18576529)

  • 1. Kinetics of ethanol production during the reactor feeding phase in constant feb-batch fermentation of molasses.
    Borzani W
    Biotechnol Bioeng; 1987 May; 29(7):844-9. PubMed ID: 18576529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial cellulose production by fed-batch fermentation in molasses medium.
    Bae S; Shoda M
    Biotechnol Prog; 2004; 20(5):1366-71. PubMed ID: 15458319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production.
    Cazetta ML; Celligoi MA; Buzato JB; Scarmino IS
    Bioresour Technol; 2007 Nov; 98(15):2824-8. PubMed ID: 17420121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production.
    Liu YS; Wu JY
    Biotechnol Bioeng; 2008 Dec; 101(5):996-1004. PubMed ID: 18683256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles.
    Liu CZ; Wang F; Ou-Yang F
    Bioresour Technol; 2009 Jan; 100(2):878-82. PubMed ID: 18760598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuzzy control of ethanol concentration its application to maximum glutathione production in yeast fed-batch culture.
    Alfafara CG; Miura K; Shimizu H; Shioya S; Suga K; Suzuki K
    Biotechnol Bioeng; 1993 Feb; 41(4):493-501. PubMed ID: 18609579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics.
    Kargi F
    Lett Appl Microbiol; 2009 Apr; 48(4):398-401. PubMed ID: 19187510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation kinetics of spent sulfite liquor by Saccharomyces cerevisiae.
    Safi BF; Rouleau D; Mayer RC; Desrochers M
    Biotechnol Bioeng; 1986 Jul; 28(7):944-51. PubMed ID: 18555414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale.
    Arshad M; Khan ZM; Khalil-ur-Rehman ; Shah FA; Rajoka MI
    Lett Appl Microbiol; 2008 Nov; 47(5):410-4. PubMed ID: 19146530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a statistical technique to investigate calcium, sodium, and magnesium ion effect in yeast fermentation.
    Soyuduru D; Ergun M; Tosun A
    Appl Biochem Biotechnol; 2009 Feb; 152(2):326-33. PubMed ID: 18688579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Kinetic model for optimal feeding strategy in astaxanthin production by Xanthophyllomyces dendrorhous].
    Lu M; Ji L; Liu Y; Zhou P; Yu L
    Sheng Wu Gong Cheng Xue Bao; 2008 Nov; 24(11):1937-42. PubMed ID: 19256342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5.
    Wang X; Jin B
    J Biosci Bioeng; 2009 Feb; 107(2):138-44. PubMed ID: 19217551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222. Part II: investigation of discrepancies between predicted and observed performance at high solids concentration.
    Zhang J; Shao X; Lynd LR
    Biotechnol Bioeng; 2009 Dec; 104(5):932-8. PubMed ID: 19575440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic fermentation kinetics of lactose in acidogenic biofilms.
    Yu J; Pinder KL
    Biotechnol Bioeng; 1993 Feb; 41(4):479-88. PubMed ID: 18609577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invertase activity of intact cells of Saccharomyces cerevisiae growing on sugarcane molasses. II. Unsteady-state continuous-culture tests.
    Vitolo M; Vairo ML; Borzani W
    Biotechnol Bioeng; 1987 Jul; 30(1):9-14. PubMed ID: 18576577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses.
    Jiang L; Wang J; Liang S; Wang X; Cen P; Xu Z
    Bioresour Technol; 2009 Jul; 100(13):3403-9. PubMed ID: 19297150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of Molasses Fermentation for Bioethanol Production: A Comparative Investigation of Monod and Andrews Models Accuracy Assessment.
    Zentou H; Zainal Abidin Z; Yunus R; Awang Biak DR; Zouanti M; Hassani A
    Biomolecules; 2019 Jul; 9(8):. PubMed ID: 31357463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production from henequen (Agave fourcroydes Lem.) juice and molasses by a mixture of two yeasts.
    Cáceres-Farfán M; Lappe P; Larqué-Saavedra A; Magdub-Méndez A; Barahona-Pérez L
    Bioresour Technol; 2008 Dec; 99(18):9036-9. PubMed ID: 18524573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel strategy using an adsorbent-column chromatography for effective ethanol production from sugarcane or sugar beet molasses.
    Hatano K; Kikuchi S; Nakamura Y; Sakamoto H; Takigami M; Kojima Y
    Bioresour Technol; 2009 Oct; 100(20):4697-703. PubMed ID: 19467586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.