BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18576569)

  • 21. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498.
    Gupta R; Sharma KK; Kuhad RC
    Bioresour Technol; 2009 Feb; 100(3):1214-20. PubMed ID: 18835157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag.
    Slininger PJ; Thompson SR; Weber S; Liu ZL; Moon J
    Biotechnol Bioeng; 2011 Aug; 108(8):1801-15. PubMed ID: 21370229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2.
    Saitoh S; Hasunuma T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethanol production by continuous fermentation of D-(+)-cellobiose, D-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis.
    Crespo CF; Badshah M; Alvarez MT; Mattiasson B
    Bioresour Technol; 2012 Jan; 103(1):186-91. PubMed ID: 22055102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.
    Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK; Sedlak M; Khan A; Ho NW
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous acetone-butanol-ethanol fermentation using SO2-ethanol-water spent liquor from spruce.
    Survase SA; Sklavounos E; Jurgens G; van Heiningen A; Granström T
    Bioresour Technol; 2011 Dec; 102(23):10996-1002. PubMed ID: 21974878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of pentoses to ethanol by yeasts and fungi.
    Schneider H
    Crit Rev Biotechnol; 1989; 9(1):1-40. PubMed ID: 2670247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis.
    Yadav KS; Naseeruddin S; Prashanthi GS; Sateesh L; Rao LV
    Bioresour Technol; 2011 Jun; 102(11):6473-8. PubMed ID: 21470850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
    Rodrigues RC; Lu C; Lin B; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Optimization of xylose fermentation for ethanol production by Candida shehatae HDYXHT-01].
    Ge J; Liu G; Yang X; Sun H; Ling H; Ping W
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):404-11. PubMed ID: 21650021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production.
    Olofsson K; Wiman M; Lidén G
    J Biotechnol; 2010 Jan; 145(2):168-75. PubMed ID: 19900494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11.
    Okuda N; Ninomiya K; Takao M; Katakura Y; Shioya S
    J Biosci Bioeng; 2007 Apr; 103(4):350-7. PubMed ID: 17502277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status.
    van Maris AJ; Abbott DA; Bellissimi E; van den Brink J; Kuyper M; Luttik MA; Wisselink HW; Scheffers WA; van Dijken JP; Pronk JT
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):391-418. PubMed ID: 17033882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of bark on the fermentation of Douglas-fir whitewood pre-hydrolysates.
    Robinson J; Keating JD; Boussaid A; Mansfield SD; Saddler JN
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):443-8. PubMed ID: 12172607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with Saccharomyces cerevisiae.
    Lebeau T; Jouenne T; Junter GA
    Microbiol Res; 2007; 162(3):211-8. PubMed ID: 16959480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling.
    Bajwa PK; Pinel D; Martin VJ; Trevors JT; Lee H
    J Microbiol Methods; 2010 May; 81(2):179-86. PubMed ID: 20298725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fermentation of xylose and hemicellulose hydrolysates by an ethanol-adapted culture of Bacteroides polypragmatus.
    Patel GB; MacKenzie CR; Agnew BJ
    Arch Microbiol; 1986 Oct; 146(1):68-73. PubMed ID: 3813774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce.
    Bertilsson M; Olofsson K; Lidén G
    Biotechnol Biofuels; 2009 Apr; 2(1):8. PubMed ID: 19356227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.