BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18576569)

  • 41. Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae.
    Taherzadeh MJ; Fox M; Hjorth H; Edebo L
    Bioresour Technol; 2003 Jul; 88(3):167-77. PubMed ID: 12618037
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400.
    Ohgren K; Bengtsson O; Gorwa-Grauslund MF; Galbe M; Hahn-Hägerdal B; Zacchi G
    J Biotechnol; 2006 Dec; 126(4):488-98. PubMed ID: 16828190
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis.
    Rattanachomsri U; Tanapongpipat S; Eurwilaichitr L; Champreda V
    J Biosci Bioeng; 2009 May; 107(5):488-93. PubMed ID: 19393545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ethanol fermentation of energy beets by self-flocculating and non-flocculating yeasts.
    Zhang N; Steven Green V; Ge X; Savary BJ; Xu J
    Bioresour Technol; 2014 Mar; 155():189-97. PubMed ID: 24462879
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol.
    Varga E; Klinke HB; Réczey K; Thomsen AB
    Biotechnol Bioeng; 2004 Dec; 88(5):567-74. PubMed ID: 15470714
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse.
    de Souza CJ; Costa DA; Rodrigues MQ; dos Santos AF; Lopes MR; Abrantes AB; dos Santos Costa P; Silveira WB; Passos FM; Fietto LG
    Bioresour Technol; 2012 Apr; 109():63-9. PubMed ID: 22285296
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strain improvement of thermotolerant Saccharomyces cerevisiae VS strain for better utilization of lignocellulosic substrates.
    Pasha C; Kuhad RC; Rao LV
    J Appl Microbiol; 2007 Nov; 103(5):1480-9. PubMed ID: 17953559
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioconversion of corn stover derived pentose and hexose to ethanol using cascade simultaneous saccharification and fermentation (CSSF).
    Li X; Kim TH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):99-104. PubMed ID: 21909666
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies.
    Lu Y; Warner R; Sedlak M; Ho N; Mosier NS
    Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Continuous ethanol production from wheat straw hydrolysate by recombinant ethanologenic Escherichia coli strain FBR5.
    Saha BC; Cotta MA
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):477-87. PubMed ID: 21234754
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fermentation performance and physiology of two strains of Saccharomyces cerevisiae during growth in high gravity spruce hydrolysate and spent sulphite liquor.
    Johansson E; Xiros C; Larsson C
    BMC Biotechnol; 2014 May; 14():47. PubMed ID: 24885359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Growth of wood-inhabiting yeasts of the Faroe Islands in the presence of spent sulphite liquor.
    Rönnander J; Wright SAI
    Antonie Van Leeuwenhoek; 2021 Jun; 114(6):649-666. PubMed ID: 33851316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlling fermentation of lignocellulose hydrolysates in a continuous hollow-fiber reactor using biosensors.
    Mandenius CF
    Biotechnol Bioeng; 1988 Jul; 32(2):123-9. PubMed ID: 18584728
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Continuous feeding of spent ammonium sulphite liquor improves the production and saccharification performance of cellulase by Penicillium oxalicum.
    Han X; Liu G; Song W; Qin Y; Qu Y
    Bioresour Technol; 2017 Dec; 245(Pt A):984-992. PubMed ID: 28946207
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Concurrent production of sodium lignosulfonate and ethanol from bagasse spent liquor.
    Abdulkhani A; Amiri E; Sharifzadeh A; Hedjazi S; Alizadeh P
    J Environ Manage; 2019 Feb; 231():819-824. PubMed ID: 30419437
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of cultivation procedure for Saccharomyces cerevisiae used as pitching agent in industrial spent sulphite liquor fermentations.
    Johansson E; Brandberg T; Larsson C
    J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1787-92. PubMed ID: 21505915
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvement of direct ethanol fermentation from woody biomasses by the Antarctic basidiomycetous yeast, Mrakia blollopis, under a low temperature condition.
    Tsuji M; Yokota Y; Kudoh S; Hoshino T
    Cryobiology; 2014 Apr; 68(2):303-5. PubMed ID: 24389109
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rational engineering of Saccharomyces cerevisiae towards improved tolerance to multiple inhibitors in lignocellulose fermentations.
    Brandt BA; García-Aparicio MDP; Görgens JF; van Zyl WH
    Biotechnol Biofuels; 2021 Aug; 14(1):173. PubMed ID: 34454598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.