These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 18576610)

  • 21. A hierarchically ordered TiO2 hemispherical particle array with hexagonal-non-close-packed tops: synthesis and stable superhydrophilicity without UV irradiation.
    Li Y; Sasaki T; Shimizu Y; Koshizaki N
    Small; 2008 Dec; 4(12):2286-91. PubMed ID: 19016492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces.
    Jiang Y; Wang Z; Yu X; Shi F; Xu H; Zhang X; Smet M; Dehaen W
    Langmuir; 2005 Mar; 21(5):1986-90. PubMed ID: 15723499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contact line and contact angle dynamics in superhydrophobic channels.
    Zhang J; Kwok DY
    Langmuir; 2006 May; 22(11):4998-5004. PubMed ID: 16700586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and superhydrophobicity of fluorinated titanium dioxide nanocoatings.
    Hsieh CT; Lai MH; Cheng YS
    J Colloid Interface Sci; 2009 Dec; 340(2):237-42. PubMed ID: 19775698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extreme superomniphobicity of multiwalled 8 nm TiO2 nanotubes.
    Kim H; Noh K; Choi C; Khamwannah J; Villwock D; Jin S
    Langmuir; 2011 Aug; 27(16):10191-6. PubMed ID: 21770443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superhydrophilic and tribological improvements of polymeric surfaces via plasma enhanced chemical vapor deposition ceramic coatings.
    Cavallin T; El Habra N; Casarin M; Bordin F; Sartori A; Favaro M; Gerbasi R; Rossetto G
    J Nanosci Nanotechnol; 2011 Sep; 11(9):8079-82. PubMed ID: 22097533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO2 and hydroxylated SiO2.
    Zuo J; Torres E
    Langmuir; 2010 Oct; 26(19):15161-8. PubMed ID: 20839828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoinduced superhydrophilicity: a kinetic study of time dependent photoinduced contact angle changes on TiO2 surfaces.
    Foran PS; Boxall C; Denison KR
    Langmuir; 2012 Dec; 28(51):17647-55. PubMed ID: 23189964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conversion of a metastable superhydrophobic surface to an ultraphobic surface.
    Li XM; He T; Crego-Calama M; Reinhoudt DN
    Langmuir; 2008 Aug; 24(15):8008-12. PubMed ID: 18605708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supported Ag-TiO(2) core-shell nanofibres formed at low temperature by plasma deposition.
    Borrás A; Barranco A; Yubero F; González-Elipe AR
    Nanotechnology; 2006 Jul; 17(14):3518-22. PubMed ID: 19661598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of silica-on-titania patterns with a wettability contrast.
    Kanta A; Sedev R; Ralston J
    Langmuir; 2005 Jun; 21(13):5790-4. PubMed ID: 15952824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrathin SiO(x) Film Coating Effect on the Wettability Change of TiO(2) Surfaces in the Presence and Absence of UV Light Illumination.
    Hattori A; Kawahara T; Uemoto T; Suzuki F; Tada H; Ito S
    J Colloid Interface Sci; 2000 Dec; 232(2):410-413. PubMed ID: 11097778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superhydrophobic films of electrospun fibers with multiple-scale surface morphology.
    Lim JM; Yi GR; Moon JH; Heo CJ; Yang SM
    Langmuir; 2007 Jul; 23(15):7981-9. PubMed ID: 17569546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coaxially electrospun PVDF-Teflon AF and Teflon AF-PVDF core-sheath nanofiber mats with superhydrophobic properties.
    Muthiah P; Hsu SH; Sigmund W
    Langmuir; 2010 Aug; 26(15):12483-7. PubMed ID: 20614895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process.
    Li S; Zhang S; Wang X
    Langmuir; 2008 May; 24(10):5585-90. PubMed ID: 18426232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the interface of superhydrophobic surfaces in contact with water.
    Doshi DA; Shah PB; Singh S; Branson ED; Malanoski AP; Watkins EB; Majewski J; van Swol F; Brinker CJ
    Langmuir; 2005 Aug; 21(17):7805-11. PubMed ID: 16089386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability.
    Ishizaki T; Saito N
    Langmuir; 2010 Jun; 26(12):9749-55. PubMed ID: 20377219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Situ Determination of the Water Condensation Mechanisms on Superhydrophobic and Superhydrophilic Titanium Dioxide Nanotubes.
    Macias-Montero M; Lopez-Santos C; Filippin AN; Rico VJ; Espinos JP; Fraxedas J; Perez-Dieste V; Escudero C; Gonzalez-Elipe AR; Borras A
    Langmuir; 2017 Jul; 33(26):6449-6456. PubMed ID: 28586225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties.
    Song X; Zhai J; Wang Y; Jiang L
    J Phys Chem B; 2005 Mar; 109(9):4048-52. PubMed ID: 16851462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.