These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 18576610)

  • 41. Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2.
    Lin CH; Chao JH; Liu CH; Chang JC; Wang FC
    Langmuir; 2008 Sep; 24(17):9907-15. PubMed ID: 18690728
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stable and transparent superhydrophobic nanoparticle films.
    Ling XY; Phang IY; Vancso GJ; Huskens J; Reinhoudt DN
    Langmuir; 2009 Mar; 25(5):3260-3. PubMed ID: 19437727
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-term and thermally stable superhydrophobic surfaces of carbon nanofibers.
    Wang N; Xi J; Wang S; Liu H; Feng L; Jiang L
    J Colloid Interface Sci; 2008 Apr; 320(2):365-8. PubMed ID: 18295229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces.
    Gu C; Zhang TY
    Langmuir; 2008 Oct; 24(20):12010-6. PubMed ID: 18785717
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst.
    Li Y; Zhang H; Guo Z; Han J; Zhao X; Zhao Q; Kim SJ
    Langmuir; 2008 Aug; 24(15):8351-7. PubMed ID: 18605746
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anti-fogging nanofibrous SiO(2) and nanostructured SiO(2)-TiO(2) films made by rapid flame deposition and in situ annealing.
    Tricoli A; Righettoni M; Pratsinis SE
    Langmuir; 2009 Nov; 25(21):12578-84. PubMed ID: 19621912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Island organization of TiO2 hierarchical nanostructures induced by surface wetting and drying.
    Fusi M; Di Fonzo F; Casari CS; Maccallini E; Caruso T; Agostino RG; Bottani CE; Li Bassi A
    Langmuir; 2011 Mar; 27(5):1935-41. PubMed ID: 21247199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. From superhydrophilic to superhydrophobic: controlling wettability of hydroxide zinc carbonate film on zinc plates.
    Su B; Li M; Shi Z; Lu Q
    Langmuir; 2009 Apr; 25(6):3640-5. PubMed ID: 19708248
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1 x 1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets.
    Zubkov T; Stahl D; Thompson TL; Panayotov D; Diwald O; Yates JT
    J Phys Chem B; 2005 Aug; 109(32):15454-62. PubMed ID: 16852960
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Superhydrophilic and superwetting surfaces: definition and mechanisms of control.
    Drelich J; Chibowski E
    Langmuir; 2010 Dec; 26(24):18621-3. PubMed ID: 21090661
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simultaneous fabrication of superhydrophobic and superhydrophilic polyimide surfaces with low hysteresis.
    Scheen G; Ziouche K; Bougrioua Z; Godts P; Leclercq D; Lasri T
    Langmuir; 2011 May; 27(10):6490-5. PubMed ID: 21520916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of n-hexanol and n-octanol on wetting properties and air entrapment at superhydrophobic surfaces.
    Krasowska M; Ferrari M; Liggieri L; Malysa K
    Phys Chem Chem Phys; 2011 May; 13(20):9452-7. PubMed ID: 21479322
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Double-scale roughness and superhydrophobicity on metalized Toray carbon fiber paper.
    Bliznakov S; Liu Y; Dimitrov N; Garnica J; Sedev R
    Langmuir; 2009 Apr; 25(8):4760-6. PubMed ID: 19265409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Designing superoleophobic surfaces.
    Tuteja A; Choi W; Ma M; Mabry JM; Mazzella SA; Rutledge GC; McKinley GH; Cohen RE
    Science; 2007 Dec; 318(5856):1618-22. PubMed ID: 18063796
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photon control of liquid motion on reversibly photoresponsive surfaces.
    Yang D; Piech M; Bell NS; Gust D; Vail S; Garcia AA; Schneider J; Park CD; Hayes MA; Picraux ST
    Langmuir; 2007 Oct; 23(21):10864-72. PubMed ID: 17803327
    [TBL] [Abstract][Full Text] [Related]  

  • 56. To adjust wetting properties of organic surface by in situ photoreaction of aromatic azide.
    Shi F; Niu J; Liu Z; Wang Z; Smet M; Dehaen W; Qiu Y; Zhang X
    Langmuir; 2007 Jan; 23(3):1253-7. PubMed ID: 17241041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superhydrophobic polyolefin surfaces: controlled micro- and nanostructures.
    Puukilainen E; Rasilainen T; Suvanto M; Pakkanen TA
    Langmuir; 2007 Jun; 23(13):7263-8. PubMed ID: 17518484
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hysteresis and reversibility of a superhydrophobic photopatternable silicone elastomer.
    Blanco-Gomez G; Flendrig LM; Cooper JM
    Langmuir; 2010 May; 26(10):7248-53. PubMed ID: 20180571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile preparation of poly(ethyl alpha-cyanoacrylate) superhydrophobic and gradient wetting surfaces.
    Li X; Dai H; Tan S; Zhang X; Liu H; Wang Y; Zhao N; Xu J
    J Colloid Interface Sci; 2009 Dec; 340(1):93-7. PubMed ID: 19744667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wetting properties of silicon films from alkyl-passivated particles produced by mechanochemical synthesis.
    Hallmann S; Fink MJ; Mitchell BS
    J Colloid Interface Sci; 2010 Aug; 348(2):634-41. PubMed ID: 20580764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.