These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18577223)

  • 1. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models.
    Liu D; Ghosh D; Lin X
    BMC Bioinformatics; 2008 Jun; 9():292. PubMed ID: 18577223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models.
    Liu D; Lin X; Ghosh D
    Biometrics; 2007 Dec; 63(4):1079-88. PubMed ID: 18078480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powerful tests for detecting a gene effect in the presence of possible gene-gene interactions using garrote kernel machines.
    Maity A; Lin X
    Biometrics; 2011 Dec; 67(4):1271-84. PubMed ID: 21504419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Adaptive Genetic Association Test Using Double Kernel Machines.
    Zhan X; Epstein MP; Ghosh D
    Stat Biosci; 2015 Oct; 7(2):262-281. PubMed ID: 26640602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data.
    Zhao X; Cheung LW
    BMC Bioinformatics; 2007 Feb; 8():67. PubMed ID: 17328811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omnibus risk assessment via accelerated failure time kernel machine modeling.
    Sinnott JA; Cai T
    Biometrics; 2013 Dec; 69(4):861-73. PubMed ID: 24328713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing and estimation in marker-set association study using semiparametric quantile regression kernel machine.
    Kong D; Maity A; Hsu FC; Tzeng JY
    Biometrics; 2016 Jun; 72(2):364-71. PubMed ID: 26575303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible variable selection for recovering sparsity in nonadditive nonparametric models.
    Fang Z; Kim I; Schaumont P
    Biometrics; 2016 Dec; 72(4):1155-1163. PubMed ID: 27077330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test.
    Cai T; Lin X; Carroll RJ
    Biostatistics; 2012 Sep; 13(4):776-90. PubMed ID: 22734045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite kernel machine regression based on likelihood ratio test for joint testing of genetic and gene-environment interaction effect.
    Zhao N; Zhang H; Clark JJ; Maity A; Wu MC
    Biometrics; 2019 Jun; 75(2):625-637. PubMed ID: 30430548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Powerful Test for SNP Effects on Multivariate Binary Outcomes using Kernel Machine Regression.
    Davenport CA; Maity A; Sullivan PF; Tzeng JY
    Stat Biosci; 2018 Apr; 10(1):117-138. PubMed ID: 30420901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian semiparametric regression models for evaluating pathway effects on continuous and binary clinical outcomes.
    Kim I; Pang H; Zhao H
    Stat Med; 2012 Jul; 31(15):1633-51. PubMed ID: 22438129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of gene-based logistic kernel-machine regression model on studies related to the genome-wide association].
    Wo HM; Yi HG; Pan HX; Tang SW; Zhao Y; Chen F
    Zhonghua Liu Xing Bing Xue Za Zhi; 2013 Jun; 34(6):633-6. PubMed ID: 24125621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.
    Marceau R; Lu W; Holloway S; Sale MM; Worrall BB; Williams SR; Hsu FC; Tzeng JY
    Genet Epidemiol; 2015 Sep; 39(6):456-68. PubMed ID: 26139508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L2-norm multiple kernel learning and its application to biomedical data fusion.
    Yu S; Falck T; Daemen A; Tranchevent LC; Suykens JA; De Moor B; Moreau Y
    BMC Bioinformatics; 2010 Jun; 11():309. PubMed ID: 20529363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaussian processes for machine learning.
    Seeger M
    Int J Neural Syst; 2004 Apr; 14(2):69-106. PubMed ID: 15112367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway aggregation for survival prediction via multiple kernel learning.
    Sinnott JA; Cai T
    Stat Med; 2018 Jul; 37(16):2501-2515. PubMed ID: 29664143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene shaving using a sensitivity analysis of kernel based machine learning approach, with applications to cancer data.
    Alam MA; Shahjaman M; Rahman MF; Hossain F; Deng HW
    PLoS One; 2019; 14(5):e0217027. PubMed ID: 31120939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kernel regression approach to gene-gene interaction detection for case-control studies.
    Larson NB; Schaid DJ
    Genet Epidemiol; 2013 Nov; 37(7):695-703. PubMed ID: 23868214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of partially linear structure in additive models with an application to gene expression prediction from sequences.
    Lian H; Chen X; Yang JY
    Biometrics; 2012 Jun; 68(2):437-45. PubMed ID: 21950383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.