BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18577400)

  • 1. Automated analysis of secretory vesicle distribution at the ultrastructural level.
    van Weering JR; Wijntjes R; de Wit H; Wortel J; Cornelisse LN; Veldkamp WJ; Verhage M
    J Neurosci Methods; 2008 Aug; 173(1):83-90. PubMed ID: 18577400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Munc18-1 phosphorylation by protein kinase C potentiates vesicle pool replenishment in bovine chromaffin cells.
    Nili U; de Wit H; Gulyas-Kovacs A; Toonen RF; Sørensen JB; Verhage M; Ashery U
    Neuroscience; 2006 Dec; 143(2):487-500. PubMed ID: 16997485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromaffin cells in the amphibian urodele Triturus carnifex show ultrastructural features indicative of a vesicle-mediated mode of cell degranulation.
    Crivellato E; De Falco M; Capaldo A; Laforgia V; Ribatti D; De Luca A
    Anat Rec (Hoboken); 2009 Jan; 292(1):73-8. PubMed ID: 18727112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rab3a ablation related changes in morphology of secretory vesicles in major endocrine pancreatic cells, pituitary melanotroph cells and adrenal gland chromaffin cells in mice.
    Lipovšek S; Janžekovič F; Leitinger G; Rupnik MS
    Gen Comp Endocrinol; 2013 May; 185():67-79. PubMed ID: 23399968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells.
    Giner D; López I; Villanueva J; Torres V; Viniegra S; Gutiérrez LM
    Neuroscience; 2007 May; 146(2):659-69. PubMed ID: 17395387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicular roundness and compound release in PC-12 cells.
    Germain D; Maysinger D; Glavinovic MI
    J Neurosci Methods; 2006 May; 153(1):27-42. PubMed ID: 16290198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanism of secretory vesicle docking.
    de Wit H
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):192-8. PubMed ID: 20074058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse chromaffin cells have two populations of dense core vesicles.
    Grabner CP; Price SD; Lysakowski A; Fox AP
    J Neurophysiol; 2005 Sep; 94(3):2093-104. PubMed ID: 15944233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of large dense-core vesicles in secretory cells and statistical analysis of their intracellular distribution.
    Díaz E; Ayala G; Díaz ME; Gong LW; Toomre D
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(1):2-11. PubMed ID: 20150664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vesicle docking in regulated exocytosis.
    Verhage M; Sørensen JB
    Traffic; 2008 Sep; 9(9):1414-24. PubMed ID: 18445120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron microscopic evidence for multiple types of secretory vesicles in bovine chromaffin cells.
    Koval LM; Yavorskaya EN; Lukyanetz EA
    Gen Comp Endocrinol; 2001 Mar; 121(3):261-77. PubMed ID: 11254368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Rab3a in secretory vesicle docking requires association/dissociation of guanidine phosphates and Munc18-1.
    van Weering JR; Toonen RF; Verhage M
    PLoS One; 2007 Jul; 2(7):e616. PubMed ID: 17637832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles.
    Liu Y; Schirra C; Stevens DR; Matti U; Speidel D; Hof D; Bruns D; Brose N; Rettig J
    J Neurosci; 2008 May; 28(21):5594-601. PubMed ID: 18495893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and spatial segregation of secretory vesicle pools according to vesicle age.
    Duncan RR; Greaves J; Wiegand UK; Matskevich I; Bodammer G; Apps DK; Shipston MJ; Chow RH
    Nature; 2003 Mar; 422(6928):176-80. PubMed ID: 12634788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docking of secretory vesicles is syntaxin dependent.
    de Wit H; Cornelisse LN; Toonen RF; Verhage M
    PLoS One; 2006 Dec; 1(1):e126. PubMed ID: 17205130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics of neuroendocrine secretory vesicles reveal distinct functional systems for biosynthesis and exocytosis of peptide hormones and neurotransmitters.
    Wegrzyn J; Lee J; Neveu JM; Lane WS; Hook V
    J Proteome Res; 2007 May; 6(5):1652-65. PubMed ID: 17408250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes.
    de Wit H; Walter AM; Milosevic I; Gulyás-Kovács A; Riedel D; Sørensen JB; Verhage M
    Cell; 2009 Sep; 138(5):935-46. PubMed ID: 19716167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of adrenaline administration on the interrenal gland of the newt, Triturus carnifex: evidence of intraadrenal paracrine interactions.
    Capaldo A; Gay F; Valiante S; Laforgia V; Varano L
    J Morphol; 2004 Jul; 261(1):18-25. PubMed ID: 15164364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAPS1 regulates catecholamine loading of large dense-core vesicles.
    Speidel D; Bruederle CE; Enk C; Voets T; Varoqueaux F; Reim K; Becherer U; Fornai F; Ruggieri S; Holighaus Y; Weihe E; Bruns D; Brose N; Rettig J
    Neuron; 2005 Apr; 46(1):75-88. PubMed ID: 15820695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secretory vesicles transiently dock and fuse at the porosome to discharge contents during cell secretion.
    Jena BP
    Cell Biol Int; 2009 Dec; 34(1):3-12. PubMed ID: 20017733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.