BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18577453)

  • 41. Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) for controlled delivery of paclitaxel.
    Liu SQ; Tong YW; Yang YY
    Mol Biosyst; 2005 Jul; 1(2):158-65. PubMed ID: 16880979
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels.
    Bajpai SK; Chand N; Soni S
    J Biomater Sci Polym Ed; 2015; 26(14):947-62. PubMed ID: 26135033
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface-engineering of glycidyl methacrylated dextran/gelatin microcapsules with thermo-responsive poly(N-isopropylacrylamide) gates for controlled delivery of stromal cell-derived factor-1α.
    Chen FM; Lu H; Wu LA; Gao LN; An Y; Zhang J
    Biomaterials; 2013 Sep; 34(27):6515-27. PubMed ID: 23726519
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combined ultrasonic and gamma-irradiation to prepare TiO
    Ghobashy MM
    Ultrason Sonochem; 2017 Jul; 37():529-535. PubMed ID: 28427665
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique.
    Kulkarni S; Schilli C; Grin B; Müller AH; Hoffman AS; Stayton PS
    Biomacromolecules; 2006 Oct; 7(10):2736-41. PubMed ID: 17025347
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermo-sensitive hydrogels based on interpenetrating polymer networks made of poly(N-isopropylacrylamide) and polyurethane.
    Cho SM; Kim BK
    J Biomater Sci Polym Ed; 2010; 21(8-9):1051-68. PubMed ID: 20507708
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superparamagnetic Reduction/pH/Temperature Multistimuli-Responsive Nanoparticles for Targeted and Controlled Antitumor Drug Delivery.
    Zeng J; Du P; Liu L; Li J; Tian K; Jia X; Zhao X; Liu P
    Mol Pharm; 2015 Dec; 12(12):4188-99. PubMed ID: 26554495
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine.
    Agnihotri SA; Aminabhavi TM
    Int J Pharm; 2006 Nov; 324(2):103-15. PubMed ID: 16824710
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide.
    Samanta HS; Ray SK
    Carbohydr Polym; 2014 Jan; 99():666-78. PubMed ID: 24274557
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Humic acid removal and easy-cleanability using temperature-responsive ZrO2 tubular membranes grafted with poly(N-isopropylacrylamide) brush chains.
    Zhao Y; Zhou S; Li M; Xue A; Zhang Y; Wang J; Xing W
    Water Res; 2013 May; 47(7):2375-86. PubMed ID: 23466218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessment and characterization of degradation effect for the varied degrees of ultra-violet radiation onto the collagen-bonded polypropylene non-woven fabric surfaces.
    Tyan YC; Liao JD; Klauser R; Wu IeD; Weng CC
    Biomaterials; 2002 Jan; 23(1):65-76. PubMed ID: 11762856
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficacy of antibiotics-loaded interpenetrating network (IPNs) hydrogel based on poly(acrylic acid) and gelatin for treatment of experimental osteomyelitis: in vivo study.
    Changez M; Koul V; Dinda AK
    Biomaterials; 2005 May; 26(14):2095-104. PubMed ID: 15576184
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sol-gel silica controlled release thin films for the inhibition of methicillin-resistant Staphylococcus aureus.
    Bhattacharyya S; Agrawal A; Knabe C; Ducheyne P
    Biomaterials; 2014 Jan; 35(1):509-17. PubMed ID: 24099711
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sustained release of vancomycin from a new biodegradable glue to prevent methicillin-resistant Staphylococcus aureus graft infection.
    Morishima M; Marui A; Yanagi S; Nomura T; Nakajima N; Hyon SH; Ikeda T; Sakata R
    Interact Cardiovasc Thorac Surg; 2010 Jul; 11(1):52-5. PubMed ID: 20360210
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pharmacodynamic assessment of vancomycin-rifampicin combination against methicillin resistant Staphylococcus aureus biofilm: a parametric response surface analysis.
    Salem AH; Elkhatib WF; Noreddin AM
    J Pharm Pharmacol; 2011 Jan; 63(1):73-9. PubMed ID: 21155818
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature-pH sensitivity of bovine serum albumin protein-microgels based on cross-linked poly(N-isopropylacrylamide-co-acrylic acid).
    Huo D; Li Y; Qian Q; Kobayashi T
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):36-42. PubMed ID: 16698239
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cross-linking density and temperature effects on the self-assembly of SiO2-PNIPAAm core-shell particles at interfaces.
    Nazli KO; Pester CW; Konradi A; Böker A; van Rijn P
    Chemistry; 2013 Apr; 19(18):5586-94. PubMed ID: 23554025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of pH-Responsive Polyimide Polyacrylic Acid Smart Gating Membranes: Ultrafast Method Using 248 nm Krypton Fluoride Excimer Laser.
    Patil RS; Sancaktar E
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24431-24441. PubMed ID: 34008949
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles.
    Sairam M; Babu VR; Vijaya B; Naidu K; Aminabhavi TM
    Int J Pharm; 2006 Aug; 320(1-2):131-6. PubMed ID: 16766148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.