These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1857762)

  • 1. Photo-induced riboflavin binding to the tryptophan residues of bovine and human serum albumins.
    Tapia G; Silva E
    Radiat Environ Biophys; 1991; 30(2):131-8. PubMed ID: 1857762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins.
    Moriyama Y; Ohta D; Hachiya K; Mitsui Y; Takeda K
    J Protein Chem; 1996 Apr; 15(3):265-72. PubMed ID: 8804574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic studies on the interaction between riboflavin and albumins.
    Zhao H; Ge M; Zhang Z; Wang W; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):811-7. PubMed ID: 16530468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrometry researches on interaction and sonodynamic damage of riboflavin (RF) to bovine serum albumin (BSA).
    Wang Z; Li J; Wang J; Zou M; Wang S; Li Y; Kong Y; Xia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 87():1-10. PubMed ID: 22154267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risperidone interacts with serum albumin forming complex.
    Fragoso VM; Silva D; Cruz FA; Cortez CM
    Environ Toxicol Pharmacol; 2012 Mar; 33(2):262-6. PubMed ID: 22245842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants.
    Gelamo EL; Tabak M
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Oct; 56A(11):2255-71. PubMed ID: 11058071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.
    Tayeh N; Rungassamy T; Albani JR
    J Pharm Biomed Anal; 2009 Sep; 50(2):107-16. PubMed ID: 19473803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of loratadine with serum albumins studied by fluorescence quenching method.
    Zhou B; Qi ZD; Xiao Q; Dong JX; Zhang YZ; Liu Y
    J Biochem Biophys Methods; 2007 Aug; 70(5):743-7. PubMed ID: 17482267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stoichiometric analysis of bovine serum albumin-gossypol interactions: a fluorescence quenching study.
    Rao AG
    Indian J Biochem Biophys; 1992 Apr; 29(2):179-82. PubMed ID: 1398710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of Sulpiride to Seric Albumins.
    da Silva Fragoso VM; de Morais Coura CP; Hoppe LY; Soares MA; Silva D; Cortez CM
    Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26742031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of monoclonal antibodies against a tryptophan-riboflavin adduct toward irradiated and non-irradiated bovine-eye-lens protein fractions: an indicator of in vivo visible-light-mediated phototransformations.
    Mancini M; Edwards AM; Becker MI; de Ioannes A; Silva E
    J Photochem Photobiol B; 2000 Mar; 55(1):9-15. PubMed ID: 10877061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. π-Cation interactions as the origin of the weak absorption at 532 nm observed in tryptophan-containing polypeptides.
    Roveri OA; Braslavsky SE
    Photochem Photobiol Sci; 2012 Jun; 11(6):962-6. PubMed ID: 22273601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Characteristics of complex-formation of chlorine e6 with human and bovine serum albumins].
    Kochubeev GA; Frolov AA; Zen'kevich EI; Gurinovich GP
    Mol Biol (Mosk); 1988; 22(4):968-75. PubMed ID: 3185537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of reactivity of tryptophan residues in serum albumins and lysozyme by N-bromosuccinamide fluorescence quenching.
    Peterman BF; Laidler KJ
    Arch Biochem Biophys; 1980 Jan; 199(1):158-64. PubMed ID: 7188848
    [No Abstract]   [Full Text] [Related]  

  • 15. Tyrosine fluorescence probing of conformational changes in tryptophan-lacking domain of albumins.
    Zhdanova NG; Maksimov EG; Arutyunyan AM; Fadeev VV; Shirshin EA
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():223-229. PubMed ID: 27918933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methyl parathion interaction with human and bovine serum albumin.
    Silva D; Cortez CM; Cunha-Bastos J; Louro SR
    Toxicol Lett; 2004 Feb; 147(1):53-61. PubMed ID: 14700528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location and binding mechanism of an ESIPT probe 3-hydroxy-2-naphthoic acid in unsaturated fatty acid bound serum albumins.
    Ghorai SK; Tripathy DR; Dasgupta S; Ghosh S
    J Photochem Photobiol B; 2014 Feb; 131():1-15. PubMed ID: 24463545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-biomolecule interactions: fluorescence studies on interaction of aminonaphthalenesulfonic acid derivatives with serum albumins.
    Jun HW; Luzzi LA; Ma JK
    J Pharm Sci; 1975 Mar; 64(3):493-7. PubMed ID: 1171214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods.
    Cheng Z; Liu R; Jiang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():92-105. PubMed ID: 23831983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of monoclonal antibodies against a riboflavin-tryptophan photoinduced adduct: reactivity to eye lens proteins.
    Diaz M; Becker MI; De Ioannes AE; Silva E
    Photochem Photobiol; 1996 Jun; 63(6):762-7. PubMed ID: 8992500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.