These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 1857762)
21. Spectroscopic studies on the interaction of riboflavin with bovine serum albumin. Kamat BP; Seetharamappa J; Melwanki MB Indian J Biochem Biophys; 2004 Aug; 41(4):173-8. PubMed ID: 22900349 [TBL] [Abstract][Full Text] [Related]
22. An Investigation on intermolecular interaction between Bis(indolyl)methane and HSA and BSA using multi technique methods. Dezhampanah H; Firouzi R J Biomol Struct Dyn; 2017 Dec; 35(16):3615-3626. PubMed ID: 27897092 [TBL] [Abstract][Full Text] [Related]
23. Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein. Epps DE; Raub TJ; Caiolfa V; Chiari A; Zamai M J Pharm Pharmacol; 1999 Jan; 51(1):41-8. PubMed ID: 10197416 [TBL] [Abstract][Full Text] [Related]
24. Comparative phosphorescence and optically detected magnetic resonance studies of fatty acid binding to serum albumin. Mao SY; Maki AH Biochemistry; 1987 Jun; 26(12):3576-82. PubMed ID: 3651398 [TBL] [Abstract][Full Text] [Related]
25. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
27. Oxidative modification of tryptophan residues exposed to peroxynitrite. Kato Y; Kawakishi S; Aoki T; Itakura K; Osawa T Biochem Biophys Res Commun; 1997 May; 234(1):82-4. PubMed ID: 9168965 [TBL] [Abstract][Full Text] [Related]
28. New advances in the study on the interaction of [Cr(phen)2(dppz)]3+ complex with biological models; association to transporting proteins. Toneatto J; Argüello GA J Inorg Biochem; 2011 May; 105(5):645-51. PubMed ID: 21450267 [TBL] [Abstract][Full Text] [Related]
29. Energy transfer photophysics from serum albumins to sequestered 3-hydroxy-2-naphthoic acid, an excited state intramolecular proton-transfer probe. Sardar PS; Samanta S; Maity SS; Dasgupta S; Ghosh S J Phys Chem B; 2008 Mar; 112(11):3451-61. PubMed ID: 18293954 [TBL] [Abstract][Full Text] [Related]
30. Energy transfer from tryptophan residues of proteins to 8-anilinonaphthalene-1-sulfonate. Chang LS; Wen EY; Hung JJ; Chang CC J Protein Chem; 1994 Oct; 13(7):635-40. PubMed ID: 7702745 [TBL] [Abstract][Full Text] [Related]
31. Obtention of a photo-induced adduct between a vitamin and an essential aminoacid. Binding of riboflavin to tryptophan. Salim-Hanna M; Edwards AM; Silva E Int J Vitam Nutr Res; 1987; 57(2):155-9. PubMed ID: 3654109 [TBL] [Abstract][Full Text] [Related]
32. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: study of binding interaction and structural changes of protein. Samanta A; Jana S; Ray D; Guchhait N Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():23-34. PubMed ID: 24216153 [TBL] [Abstract][Full Text] [Related]
33. Investigation of the binding affinity in vitamin B12-Bovine serum albumin system using various spectroscopic methods. Makarska-Bialokoz M Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():262-269. PubMed ID: 28528252 [TBL] [Abstract][Full Text] [Related]
34. Photoinduced protein modifications by methylene blue and naproxen. Bracchitta G; Catalfo A; De Guidi G Photochem Photobiol Sci; 2012 Dec; 11(12):1886-96. PubMed ID: 22930354 [TBL] [Abstract][Full Text] [Related]
35. Optical detection of triplet-state magnetic resonance studies on individual tryptophan residues of serum albumin: correlation between phosphorescence and zero-field splittings. Mao SY; Maki AH Biochemistry; 1987 Jun; 26(11):3106-14. PubMed ID: 3607014 [TBL] [Abstract][Full Text] [Related]
36. Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes. Sandhya B; Hegde AH; Kalanur SS; Katrahalli U; Seetharamappa J J Pharm Biomed Anal; 2011 Apr; 54(5):1180-6. PubMed ID: 21215548 [TBL] [Abstract][Full Text] [Related]
37. Fluorescence spectroscopic study of serum albumin-bromadiolone interaction: fluorimetric determination of bromadiolone. Deepa S; Mishra AK J Pharm Biomed Anal; 2005 Jul; 38(3):556-63. PubMed ID: 15925260 [TBL] [Abstract][Full Text] [Related]
38. Interactions of aptamers with sera albumins. Cortez CM; Silva D; Silva CM; Missailidis S Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():270-5. PubMed ID: 22647400 [TBL] [Abstract][Full Text] [Related]
39. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Gelamo EL; Silva CH; Imasato H; Tabak M Biochim Biophys Acta; 2002 Jan; 1594(1):84-99. PubMed ID: 11825611 [TBL] [Abstract][Full Text] [Related]
40. The nature of the apolar phase influences the structure of the protein emulsifier in oil-in-water emulsions stabilized by bovine serum albumin. A front-surface fluorescence study. Rampon V; Brossard C; Mouhous-Riou N; Bousseau B; Llamas G; Genot C Adv Colloid Interface Sci; 2004 May; 108-109():87-94. PubMed ID: 15072931 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]