These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 1857762)
41. Riboflavin-induced Type 1 photo-oxidation of tryptophan using a high intensity 365 nm light emitting diode. Silva E; Barrias P; Fuentes-Lemus E; Tirapegui C; Aspee A; Carroll L; Davies MJ; López-Alarcón C Free Radic Biol Med; 2019 Feb; 131():133-143. PubMed ID: 30502456 [TBL] [Abstract][Full Text] [Related]
42. Differential modulation in binding of ketoprofen to bovine serum albumin in the presence and absence of surfactants: spectroscopic and calorimetric insights. Misra PP; Kishore N Chem Biol Drug Des; 2013 Jul; 82(1):81-98. PubMed ID: 23517326 [TBL] [Abstract][Full Text] [Related]
43. Interaction of bromocresol green with different serum albumins studied by fluorescence quenching. Trivedi VD; Saxena I; Siddiqui MU; Qasim MA Biochem Mol Biol Int; 1997 Sep; 43(1):1-8. PubMed ID: 9315276 [TBL] [Abstract][Full Text] [Related]
44. Biomolecular interactions of amphotericin B nanomicelles with serum albumins: A combined biophysical and molecular docking approach. Temboot P; Usman F; Ul-Haq Z; Khalil R; Srichana T Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():442-456. PubMed ID: 30055454 [TBL] [Abstract][Full Text] [Related]
45. Bile salts-bovine serum albumin binding: spectroscopic and thermodynamic studies. Pico GA; Houssier C Biochim Biophys Acta; 1989 Nov; 999(2):128-34. PubMed ID: 2597702 [TBL] [Abstract][Full Text] [Related]
46. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence. Albani JR; Vogelaer J; Bretesche L; Kmiecik D J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042 [TBL] [Abstract][Full Text] [Related]
47. Self and foreign peptides interact with intact and disassembled MHC class II antigen HLA-DR via tryptophan pockets. Kropshofer H; Bohlinger I; Max H; Kalbacher H Biochemistry; 1991 Sep; 30(38):9177-87. PubMed ID: 1892827 [TBL] [Abstract][Full Text] [Related]
48. Tb(III) as a fluorescent probe for the structure of bovine serum albumin. Jin YJ; Li WL; Wang QR Biochem Biophys Res Commun; 1991 May; 177(1):474-9. PubMed ID: 1904219 [TBL] [Abstract][Full Text] [Related]
49. Photodynamically generated bovine serum albumin radicals: evidence for damage transfer and oxidation at cysteine and tryptophan residues. Silvester JA; Timmins GS; Davies MJ Free Radic Biol Med; 1998 Mar; 24(5):754-66. PubMed ID: 9586806 [TBL] [Abstract][Full Text] [Related]
50. Study of a photo-induced lysozyme-riboflavin bond. Ferrer I; Silva E Radiat Environ Biophys; 1985; 24(1):63-70. PubMed ID: 3975351 [TBL] [Abstract][Full Text] [Related]
51. Photochemical-like destruction of tryptophan in serum albumins induced by enzyme-generated triplet species. Rivas EI; Paladini A; Cilento G Photochem Photobiol; 1984 Nov; 40(5):565-8. PubMed ID: 6514807 [No Abstract] [Full Text] [Related]
52. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II. Chabbert M; Lukas TJ; Watterson DM; Axelsen PH; Prendergast FG Biochemistry; 1991 Jul; 30(30):7615-30. PubMed ID: 1854758 [TBL] [Abstract][Full Text] [Related]
53. [Fluorescence study on the interaction of salicylic acid and bovine serum albumin]. Xiao HR; Sheng LQ; Shi CH; Xu XL; Xie YS; Liu QL Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):78-81. PubMed ID: 15768982 [TBL] [Abstract][Full Text] [Related]
54. Mechanisms of drug photobinding to proteins: photobinding of suprofen to human serum albumin. Moser J; Hye A; Lovell WW; Earl LK; Castell JV; Miranda MA Toxicol In Vitro; 2001; 15(4-5):333-7. PubMed ID: 11566558 [TBL] [Abstract][Full Text] [Related]
55. Probing nonenzymatic glycation of proteins by deep ultraviolet light emitting diode induced autofluorescence. Mukunda DC; Joshi VK; Chandra S; Siddaramaiah M; Rodrigues J; Gadag S; Nayak UY; Mazumder N; Satyamoorthy K; Mahato KK Int J Biol Macromol; 2022 Jul; 213():279-296. PubMed ID: 35654218 [TBL] [Abstract][Full Text] [Related]
56. Comprehensive study of interaction between biocompatible PEG-InP/ZnS QDs and bovine serum albumin. Sannaikar MS; Inamdar LS; Pujar GH; Wari MN; Balasinor NH; Inamdar SR Luminescence; 2018 May; 33(3):495-504. PubMed ID: 29282888 [TBL] [Abstract][Full Text] [Related]
57. Phosphorescence lifetime studies of interactions between serum albumins and sodium dodecyl sulfate. Enescu M; Ionescu R; Dumbraveanu G; Pascu ML Photochem Photobiol; 1993 Feb; 57(2):367-70. PubMed ID: 8451299 [TBL] [Abstract][Full Text] [Related]
58. Steady-state and time resolved fluorescence of albumins interacting with N-oleylethanolamine, a component of the endogenous N-acylethanolamines. Zolese G; Falcioni G; Bertoli E; Galeazzi R; Wozniak M; Wypych Z; Gratton E; Ambrosini A Proteins; 2000 Jul; 40(1):39-48. PubMed ID: 10813829 [TBL] [Abstract][Full Text] [Related]
59. Copper and zinc ion binding by bovine, dog, and rat serum albumins. Giroux E; Schoun J J Inorg Biochem; 1981 Jul; 14(4):359-62. PubMed ID: 7276934 [TBL] [Abstract][Full Text] [Related]
60. Resonance energy transfer between cysteine-34 and tryptophan-214 in human serum albumin. Distance measurements as a function of pH. Suzukida M; Le HP; Shahid F; McPherson RA; Birnbaum ER; Darnall DW Biochemistry; 1983 May; 22(10):2415-20. PubMed ID: 6860637 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]