BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 18578569)

  • 1. The B cell antigen receptor and overexpression of MYC can cooperate in the genesis of B cell lymphomas.
    Refaeli Y; Young RM; Turner BC; Duda J; Field KA; Bishop JM
    PLoS Biol; 2008 Jun; 6(6):e152. PubMed ID: 18578569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insertion of c-Myc into Igh induces B-cell and plasma-cell neoplasms in mice.
    Park SS; Kim JS; Tessarollo L; Owens JD; Peng L; Han SS; Tae Chung S; Torrey TA; Cheung WC; Polakiewicz RD; McNeil N; Ried T; Mushinski JF; Morse HC; Janz S
    Cancer Res; 2005 Feb; 65(4):1306-15. PubMed ID: 15735016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD19 is a major B cell receptor-independent activator of MYC-driven B-lymphomagenesis.
    Chung EY; Psathas JN; Yu D; Li Y; Weiss MJ; Thomas-Tikhonenko A
    J Clin Invest; 2012 Jun; 122(6):2257-66. PubMed ID: 22546857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-hit B-cell lymphomas with BCL6 and MYC translocations are aggressive, frequently extranodal lymphomas distinct from BCL2 double-hit B-cell lymphomas.
    Pillai RK; Sathanoori M; Van Oss SB; Swerdlow SH
    Am J Surg Pathol; 2013 Mar; 37(3):323-32. PubMed ID: 23348205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillation between B-lymphoid and myeloid lineages in Myc-induced hematopoietic tumors following spontaneous silencing/reactivation of the EBF/Pax5 pathway.
    Yu D; Allman D; Goldschmidt MH; Atchison ML; Monroe JG; Thomas-Tikhonenko A
    Blood; 2003 Mar; 101(5):1950-5. PubMed ID: 12406913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis.
    Eischen CM; Weber JD; Roussel MF; Sherr CJ; Cleveland JL
    Genes Dev; 1999 Oct; 13(20):2658-69. PubMed ID: 10541552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adult B-cell lymphomas with burkitt-like morphology are phenotypically and genotypically heterogeneous with aggressive clinical behavior.
    McClure RF; Remstein ED; Macon WR; Dewald GW; Habermann TM; Hoering A; Kurtin PJ
    Am J Surg Pathol; 2005 Dec; 29(12):1652-60. PubMed ID: 16327438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The B-cell receptor controls fitness of MYC-driven lymphoma cells via GSK3β inhibition.
    Varano G; Raffel S; Sormani M; Zanardi F; Lonardi S; Zasada C; Perucho L; Petrocelli V; Haake A; Lee AK; Bugatti M; Paul U; Van Anken E; Pasqualucci L; Rabadan R; Siebert R; Kempa S; Ponzoni M; Facchetti F; Rajewsky K; Casola S
    Nature; 2017 Jun; 546(7657):302-306. PubMed ID: 28562582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tp53 deletion in B lineage cells predisposes mice to lymphomas with oncogenic translocations.
    Rowh MA; DeMicco A; Horowitz JE; Yin B; Yang-Iott KS; Fusello AM; Hobeika E; Reth M; Bassing CH
    Oncogene; 2011 Nov; 30(47):4757-64. PubMed ID: 21625223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cutting edge: constitutive B cell receptor signaling is critical for basal growth of B lymphoma.
    Gururajan M; Jennings CD; Bondada S
    J Immunol; 2006 May; 176(10):5715-9. PubMed ID: 16670274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MYC deregulation in lymphoid tumors: molecular mechanisms, clinical consequences and therapeutic implications.
    Sewastianik T; Prochorec-Sobieszek M; Chapuy B; Juszczyński P
    Biochim Biophys Acta; 2014 Dec; 1846(2):457-67. PubMed ID: 25199984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of genomic aberrations suggest that Burkitt lymphomas with complex karyotype are distinct from other aggressive B-cell lymphomas with MYC rearrangement.
    Havelange V; Ameye G; Théate I; Callet-Bauchu E; Mugneret F; Michaux L; Dastugue N; Penther D; Barin C; Collonge-Rame MA; Baranger L; Terré C; Nadal N; Lippert E; Laï JL; Cabrol C; Tigaud I; Herens C; Hagemeijer A; Raphael M; Libouton JM; Poirel HA;
    Genes Chromosomes Cancer; 2013 Jan; 52(1):81-92. PubMed ID: 23012230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antigen selection in B-cell lymphomas--tracing the evidence.
    Sutton LA; Agathangelidis A; Belessi C; Darzentas N; Davi F; Ghia P; Rosenquist R; Stamatopoulos K
    Semin Cancer Biol; 2013 Dec; 23(6):399-409. PubMed ID: 23932942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A p53 defect sensitizes various stages of B cell development to lymphomagenesis in mice carrying an IgH 3' regulatory region-driven c-myc transgene.
    Fiancette R; Rouaud P; Vincent-Fabert C; Laffleur B; Magnone V; Cogné M; Denizot Y
    J Immunol; 2011 Dec; 187(11):5772-82. PubMed ID: 22039300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MYC-associated and double-hit lymphomas: a review of pathobiology, prognosis, and therapeutic approaches.
    Petrich AM; Nabhan C; Smith SM
    Cancer; 2014 Dec; 120(24):3884-95. PubMed ID: 25060588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of immunophenotype to the investigation and differential diagnosis of Burkitt lymphoma, double-hit high-grade B-cell lymphoma, and single-hit MYC-rearranged diffuse large B-cell lymphoma.
    Tsagarakis NJ; Papadhimitriou SI; Pavlidis D; Liapis K; Gortzolidis G; Kostopoulos IV; Marinakis T; Paterakis G
    Cytometry B Clin Cytom; 2020 Sep; 98(5):412-420. PubMed ID: 32497402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A murine model for B-cell lymphomagenesis in immunocompromised hosts: c-myc-rearranged B-cell lines with a premalignant phenotype.
    Felsher DW; Denis KA; Weiss D; Ando DT; Braun J
    Cancer Res; 1990 Nov; 50(21):7042-9. PubMed ID: 2208171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adult high-grade B-cell lymphoma with Burkitt lymphoma signature: genomic features and potential therapeutic targets.
    Bouska A; Bi C; Lone W; Zhang W; Kedwaii A; Heavican T; Lachel CM; Yu J; Ferro R; Eldorghamy N; Greiner TC; Vose J; Weisenburger DD; Gascoyne RD; Rosenwald A; Ott G; Campo E; Rimsza LM; Jaffe ES; Braziel RM; Siebert R; Miles RR; Dave S; Reddy A; Delabie J; Staudt LM; Song JY; McKeithan TW; Fu K; Green M; Chan WC; Iqbal J
    Blood; 2017 Oct; 130(16):1819-1831. PubMed ID: 28801451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromanagement of lymphomas.
    Arpaia E; Mak TW
    PLoS Biol; 2008 Jun; 6(6):e156. PubMed ID: 18578571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcineurin-independent NFATc1 signaling is essential for survival of Burkitt lymphoma cells.
    Murti K; Fender H; Glatzle C; Wismer R; Sampere-Birlanga S; Wild V; Muhammad K; Rosenwald A; Serfling E; Avots A
    Front Oncol; 2023; 13():1205788. PubMed ID: 37546418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.