These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18579071)

  • 1. Thrilling moment of an inhibitory channel.
    Yang SB; Jan LY
    Neuron; 2008 Jun; 58(6):823-4. PubMed ID: 18579071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of the single channel conductance of K2P10.1 (TREK-2) by the amino-terminus: role of alternative translation initiation.
    Simkin D; Cavanaugh EJ; Kim D
    J Physiol; 2008 Dec; 586(23):5651-63. PubMed ID: 18845607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2.
    Zhuo RG; Peng P; Liu XY; Zhang SZ; Xu JP; Zheng JQ; Wei XL; Ma XY
    J Physiol Biochem; 2015 Dec; 71(4):601-10. PubMed ID: 26271386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative translation initiation further increases the molecular and functional diversity of ion channels.
    Honoré E
    J Physiol; 2008 Dec; 586(23):5605-6. PubMed ID: 19043120
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification and characterization of alternative splice variants of the mouse Trek2/Kcnk10 gene.
    Mirkovic K; Wickman K
    Neuroscience; 2011 Oct; 194():11-8. PubMed ID: 21821104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative splicing determines mRNA translation initiation and function of human K(2P)10.1 K+ channels.
    Staudacher K; Baldea I; Kisselbach J; Staudacher I; Rahm AK; Schweizer PA; Becker R; Katus HA; Thomas D
    J Physiol; 2011 Aug; 589(Pt 15):3709-20. PubMed ID: 21669980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular regulations governing TREK and TRAAK channel functions.
    Noël J; Sandoz G; Lesage F
    Channels (Austin); 2011; 5(5):402-9. PubMed ID: 21829087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A splice variant of the two-pore domain potassium channel TREK-1 with only one pore domain reduces the surface expression of full-length TREK-1 channels.
    Rinné S; Renigunta V; Schlichthörl G; Zuzarte M; Bittner S; Meuth SG; Decher N; Daut J; Preisig-Müller R
    Pflugers Arch; 2014 Aug; 466(8):1559-70. PubMed ID: 24196565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variants of stretch-activated two-pore potassium channel TREK-1 associated with preterm labor in humans.
    Wu YY; Singer CA; Buxton IL
    Biol Reprod; 2012 Oct; 87(4):96. PubMed ID: 22811574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle.
    Xian Tao Li ; Dyachenko V; Zuzarte M; Putzke C; Preisig-Müller R; Isenberg G; Daut J
    Cardiovasc Res; 2006 Jan; 69(1):86-97. PubMed ID: 16248991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TREK-1 isoforms generated by alternative translation initiation display different susceptibility to the antidepressant fluoxetine.
    Eckert M; Egenberger B; Döring F; Wischmeyer E
    Neuropharmacology; 2011; 61(5-6):918-23. PubMed ID: 21740918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium.
    Thomas D; Plant LD; Wilkens CM; McCrossan ZA; Goldstein SA
    Neuron; 2008 Jun; 58(6):859-70. PubMed ID: 18579077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic and thermal stimuli control K(2P)2.1 (TREK-1) through modular sensory and gating domains.
    Bagriantsev SN; Clark KA; Minor DL
    EMBO J; 2012 Aug; 31(15):3297-308. PubMed ID: 22728824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phospholipid sensor controls mechanogating of the K+ channel TREK-1.
    Chemin J; Patel AJ; Duprat F; Lauritzen I; Lazdunski M; Honoré E
    EMBO J; 2005 Jan; 24(1):44-53. PubMed ID: 15577940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular physiology of pH-sensitive background K(2P) channels.
    Lesage F; Barhanin J
    Physiology (Bethesda); 2011 Dec; 26(6):424-37. PubMed ID: 22170960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and functional characterization of zebrafish K(2P)10.1 (TREK2) two-pore-domain K(+) channels.
    Gierten J; Hassel D; Schweizer PA; Becker R; Katus HA; Thomas D
    Biochim Biophys Acta; 2012 Jan; 1818(1):33-41. PubMed ID: 21963410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The TREK K2P channels and their role in general anaesthesia and neuroprotection.
    Franks NP; Honoré E
    Trends Pharmacol Sci; 2004 Nov; 25(11):601-8. PubMed ID: 15491783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting TASK-1 channels as a therapeutic approach.
    Olschewski A
    Adv Exp Med Biol; 2010; 661():459-73. PubMed ID: 20204749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced inhibition of cortical glutamate and GABA release by halothane in mice lacking the K+ channel, TREK-1.
    Westphalen RI; Krivitski M; Amarosa A; Guy N; Hemmings HC
    Br J Pharmacol; 2007 Nov; 152(6):939-45. PubMed ID: 17828284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of two zebrafish Twik related potassium channels, Kcnk2a and Kcnk2b.
    Nasr N; Faucherre A; Borsotto M; Heurteaux C; Mazella J; Jopling C; Moha Ou Maati H
    Sci Rep; 2018 Oct; 8(1):15311. PubMed ID: 30333618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.