BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18579125)

  • 21. Human NAD(P)H:quinone oxidoreductase inhibition by flavonoids in living cells.
    Lee YY; Westphal AH; de Haan LH; Aarts JM; Rietjens IM; van Berkel WJ
    Free Radic Biol Med; 2005 Jul; 39(2):257-65. PubMed ID: 15964517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structures of human Delta4-3-ketosteroid 5beta-reductase (AKR1D1) reveal the presence of an alternative binding site responsible for substrate inhibition.
    Faucher F; Cantin L; Luu-The V; Labrie F; Breton R
    Biochemistry; 2008 Dec; 47(51):13537-46. PubMed ID: 19075558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the binding of daunorubicin and doxorubicin to NADPH-dependent cytosolic reductases by computational methods.
    Pirolli D; Giardina B; Mordente A; Ficarra S; De Rosa MC
    Eur J Med Chem; 2012 Oct; 56():145-54. PubMed ID: 22982121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the glycosylation of flavonoids on interaction with protein.
    Cao H; Wu D; Wang H; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):972-5. PubMed ID: 19493695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase--Carbonyl reductase 1.
    Hintzpeter J; Hornung J; Ebert B; Martin HJ; Maser E
    Chem Biol Interact; 2015 Jun; 234():162-8. PubMed ID: 25541467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific interactions of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence.
    Gutzeit HO; Henker Y; Kind B; Franz A
    Biochem Biophys Res Commun; 2004 May; 318(2):490-5. PubMed ID: 15120627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated study of tyrosinase inhibition by rutin: progress using a computational simulation.
    Si YX; Yin SJ; Oh S; Wang ZJ; Ye S; Yan L; Yang JM; Park YD; Lee J; Qian GY
    J Biomol Struct Dyn; 2012; 29(5):999-1012. PubMed ID: 22292957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The modulation of carbonyl reductase 1 by polyphenols.
    Boušová I; Skálová L; Souček P; Matoušková P
    Drug Metab Rev; 2015; 47(4):520-33. PubMed ID: 26415702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies.
    Khan MT; Orhan I; Senol FS; Kartal M; Sener B; Dvorská M; Smejkal K; Slapetová T
    Chem Biol Interact; 2009 Oct; 181(3):383-9. PubMed ID: 19596285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. S-nitrosoglutathione covalently modifies cysteine residues of human carbonyl reductase 1 and affects its activity.
    Hartmanová T; Tambor V; Lenčo J; Staab-Weijnitz CA; Maser E; Wsól V
    Chem Biol Interact; 2013 Feb; 202(1-3):136-45. PubMed ID: 23295225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Naturally occurring variants of human CBR3 alter anthracycline in vitro metabolism.
    Bains OS; Karkling MJ; Lubieniecka JM; Grigliatti TA; Reid RE; Riggs KW
    J Pharmacol Exp Ther; 2010 Mar; 332(3):755-63. PubMed ID: 20007405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of quinones and flavonoids on the reduction of all-trans retinal to all-trans retinol in pig heart.
    Shimada H; Hirashima T; Imamura Y
    Eur J Pharmacol; 2006 Jul; 540(1-3):46-52. PubMed ID: 16730705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional and structural characterization of a flavonoid glucoside 1,6-glucosyltransferase from Catharanthus roseus.
    Masada S; Terasaka K; Oguchi Y; Okazaki S; Mizushima T; Mizukami H
    Plant Cell Physiol; 2009 Aug; 50(8):1401-15. PubMed ID: 19561332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of carbonyl reductase 1 as a resveratrol-binding protein by affinity chromatography using 4'-amino-3,5-dihydroxy-trans-stilbene.
    Ito Y; Mitani T; Harada N; Isayama A; Tanimori S; Takenaka S; Nakano Y; Inui H; Yamaji R
    J Nutr Sci Vitaminol (Tokyo); 2013; 59(4):358-64. PubMed ID: 24064738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Partial purification and characterization of a new human membrane-bound carbonyl reductase playing a role in the deactivation of the anticancer drug oracin.
    Skarydová L; Skarka A; Novotná R; Zivná L; Martin HJ; Wsól V; Maser E
    Toxicology; 2009 Oct; 264(1-2):52-60. PubMed ID: 19635524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA binding to antioxidant flavonoids.
    Nafisi Sh; Shadaloi A; Feizbakhsh A; Tajmir-Riahi HA
    J Photochem Photobiol B; 2009 Jan; 94(1):1-7. PubMed ID: 18922698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pycnoporus laccase-mediated bioconversion of rutin to oligomers suitable for biotechnology applications.
    Uzan E; Portet B; Lubrano C; Milesi S; Favel A; Lesage-Meessen L; Lomascolo A
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):97-105. PubMed ID: 21210103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dietary Flavonoids as Xanthine Oxidase Inhibitors: Structure-Affinity and Structure-Activity Relationships.
    Lin S; Zhang G; Liao Y; Pan J; Gong D
    J Agric Food Chem; 2015 Sep; 63(35):7784-94. PubMed ID: 26285120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positional preferences in flavonoids for inhibition of ribonuclease A: Where "OH" where?
    Tripathy DR; Panda A; Dinda AK; Dasgupta S
    Proteins; 2021 May; 89(5):577-587. PubMed ID: 33423292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase.
    Kato A; Nasu N; Takebayashi K; Adachi I; Minami Y; Sanae F; Asano N; Watson AA; Nash RJ
    J Agric Food Chem; 2008 Jun; 56(12):4469-73. PubMed ID: 18494482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.