These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18579239)

  • 1. Use of heterogeneous operation-specific contact parameters changes predictions for foot-and-mouth disease outbreaks in complex simulation models.
    Dickey BF; Carpenter TE; Bartell SM
    Prev Vet Med; 2008 Nov; 87(3-4):272-87. PubMed ID: 18579239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential impact of introduction of foot-and-mouth disease from wild pigs into commercial livestock premises in California.
    Pineda-Krch M; O'Brien JM; Thunes C; Carpenter TE
    Am J Vet Res; 2010 Jan; 71(1):82-8. PubMed ID: 20043786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation model for the potential spread of foot-and-mouth disease in the Castile and Leon region of Spain.
    Martínez-López B; Perez AM; Sánchez-Vizcaíno JM
    Prev Vet Med; 2010 Aug; 96(1-2):19-29. PubMed ID: 20579754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential impact of an introduction of foot-and-mouth disease into the California State Fair.
    Carpenter TE; Christiansen LE; Dickey BF; Thunes C; Hullinger PJ
    J Am Vet Med Assoc; 2007 Oct; 231(8):1231-5. PubMed ID: 17937554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of movement-prevention regulations to reduce the spread of foot-and-mouth disease in The Netherlands.
    Velthuis AG; Mourits MC
    Prev Vet Med; 2007 Dec; 82(3-4):262-81. PubMed ID: 17628726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of foot-and-mouth disease spread within an integrated livestock system in Texas, USA.
    Ward MP; Highfield LD; Vongseng P; Graeme Garner M
    Prev Vet Med; 2009 Apr; 88(4):286-97. PubMed ID: 19178967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Results of a survey to estimate cattle movements and contact rates among beef herds in California, with reference to the potential spread and control of foot-and-mouth disease.
    Marshall ES; Carpenter TE; Thunes C
    J Am Vet Med Assoc; 2009 Sep; 235(5):573-9. PubMed ID: 19719450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Representation of animal distributions in space: how geostatistical estimates impact simulation modeling of foot-and-mouth disease spread.
    Highfield L; Ward MP; Laffan SW
    Vet Res; 2008; 39(2):17. PubMed ID: 18258171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical parameters for modelling the spread of foot-and-mouth disease in wildlife.
    Highfield LD; Ward MP; Laffan SW; Norby B; Wagner GG
    Epidemiol Infect; 2010 Jan; 138(1):125-38. PubMed ID: 19480725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation analyses to evaluate alternative control strategies for the 2002 foot-and-mouth disease outbreak in the Republic of Korea.
    Yoon H; Wee SH; Stevenson MA; O'Leary BD; Morris RS; Hwang IJ; Park CK; Stern MW
    Prev Vet Med; 2006 May; 74(2-3):212-25. PubMed ID: 16423417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling foot and mouth disease.
    Thornley JH; France J
    Prev Vet Med; 2009 Jun; 89(3-4):139-54. PubMed ID: 19328567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dynamic, optimal disease control model for foot-and-mouth disease: I. Model description.
    Kobayashi M; Carpenter TE; Dickey BF; Howitt RE
    Prev Vet Med; 2007 May; 79(2-4):257-73. PubMed ID: 17280729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The value of animal movement tracing: a case study simulating the spread and control of foot-and-mouth disease in California.
    Mardones FO; Zu Donha H; Thunes C; Velez V; Carpenter TE
    Prev Vet Med; 2013 Jun; 110(2):133-8. PubMed ID: 23260796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different control strategies for foot-and-mouth disease: a study of the epidemics in Canada in 1951/52, Hampshire in 1967 and Northumberland in 1966.
    Sellers RF
    Vet Rec; 2006 Jan; 158(1):9. PubMed ID: 16400097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Where diseases and networks collide: lessons to be learnt from a study of the 2001 foot-and-mouth disease epidemic.
    Shirley MD; Rushton SP
    Epidemiol Infect; 2005 Dec; 133(6):1023-32. PubMed ID: 16274498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of spatial mixing in the spread of foot-and-mouth disease.
    Chowell G; Rivas AL; Hengartner NW; Hyman JM; Castillo-Chavez C
    Prev Vet Med; 2006 Mar; 73(4):297-314. PubMed ID: 16290298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of truck contamination and information sharing on foot-and-mouth disease spreading in beef cattle production systems.
    Yang Q; Gruenbacher DM; Heier Stamm JL; Amrine DE; Brase GL; DeLoach SA; Scoglio CM
    PLoS One; 2020; 15(10):e0240819. PubMed ID: 33064750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation modelling of a hypothetical introduction of foot-and-mouth disease into Alberta.
    Sanson RL; Dubé C; Cork SC; Frederickson R; Morley C
    Prev Vet Med; 2014 Jun; 114(3-4):151-63. PubMed ID: 24679716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early and cost-effective identification of high risk/priority control areas in foot-and-mouth disease epidemics.
    Rivas AL; Schwager SJ; Smith S; Magri A
    J Vet Med B Infect Dis Vet Public Health; 2004 Aug; 51(6):263-71. PubMed ID: 15458488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of classical swine fever epidemics and control. II. Validation of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):199-205. PubMed ID: 15939558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.