BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18579249)

  • 1. Prediction of an organism's inactivation patterns from three single survival ratios determined at the end of three non-isothermal heat treatments.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2008 Aug; 126(1-2):98-111. PubMed ID: 18579249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting survival parameters from isothermal, isobaric, and "iso-concentration" inactivation experiments by the "3 end points method".
    Corradini MG; Normand MD; Newcomer C; Schaffner DW; Peleg M
    J Food Sci; 2009; 74(1):R1-R11. PubMed ID: 19200112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating microbial growth parameters from non-isothermal data: a case study with Clostridium perfringens.
    Smith-Simpson S; Corradini MG; Normand MD; Peleg M; Schaffner DW
    Int J Food Microbiol; 2007 Sep; 118(3):294-303. PubMed ID: 17804106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non isothermal conditions.
    Aragao GM; Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2007 Nov; 119(3):243-57. PubMed ID: 17869362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling non-isothermal heat inactivation of microorganisms having biphasic isothermal survival curves.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2007 May; 116(3):391-9. PubMed ID: 17395330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive software for estimating the efficacy of non-isothermal heat preservation processes.
    Peleg M; Normand MD; Corradini MG
    Int J Food Microbiol; 2008 Aug; 126(1-2):250-7. PubMed ID: 18571264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the heat resistance parameters of bacterial spores from their survival ratios at the end of UHT and other heat treatments.
    Peleg M; Normand MD; Corradini MG; Van Asselt AJ; De Jong P; Ter Steeg PF
    Crit Rev Food Sci Nutr; 2008 Aug; 48(7):634-48. PubMed ID: 18663615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and predicting non-isothermal microbial growth using general purpose software.
    Corradini MG; Amézquita A; Normand MD; Peleg M
    Int J Food Microbiol; 2006 Feb; 106(2):223-8. PubMed ID: 16226331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On modeling and simulating transitions between microbial growth and inactivation or vice versa.
    Corradini MG; Peleg M
    Int J Food Microbiol; 2006 Apr; 108(1):22-35. PubMed ID: 16403587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating microbial survival curves during thermal processing in real time.
    Peleg M; Normand MD; Corradini MG
    J Appl Microbiol; 2005; 98(2):406-17. PubMed ID: 15659195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating non-isothermal bacterial growth in foods from isothermal experimental data.
    Corradini MG; Peleg M
    J Appl Microbiol; 2005; 99(1):187-200. PubMed ID: 15960679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the irradiation followed by heat inactivation of Salmonella inoculated in liquid whole egg.
    Alvarez I; Niemira BA; Fan X; Sommers CH
    J Food Sci; 2007 Jun; 72(5):M145-52. PubMed ID: 17995736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating microbial inactivation parameters from survival curves obtained under varying conditions--the linear case.
    Peleg M; Normand MD; Campanella OH
    Bull Math Biol; 2003 Mar; 65(2):219-34. PubMed ID: 12675330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic predictive model for growth of Salmonella enteritidis in egg yolk.
    Gumudavelli V; Subbiah J; Thippareddi H; Velugoti PR; Froning G
    J Food Sci; 2007 Sep; 72(7):M254-62. PubMed ID: 17995649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of non-linear microbial inactivation kinetics under dynamic conditions.
    Valdramidis VP; Geeraerd AH; Bernaerts K; Van Impe JF
    Int J Food Microbiol; 2008 Nov; 128(1):146-52. PubMed ID: 18823671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic and deterministic model of microbial heat inactivation.
    Corradini MG; Normand MD; Peleg M
    J Food Sci; 2010 Mar; 75(2):R59-70. PubMed ID: 20492253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Weibullian model for microbial injury and mortality.
    Corradini MG; Peleg M
    Int J Food Microbiol; 2007 Nov; 119(3):319-28. PubMed ID: 17904675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat transfer models for predicting Salmonella enteritidis in shell eggs through supply chain distribution.
    Almonacid S; Simpson R; Teixeira A
    J Food Sci; 2007 Nov; 72(9):E508-17. PubMed ID: 18034720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.
    Ben Yaghlene H; Leguerinel I; Hamdi M; Mafart P
    Int J Food Microbiol; 2009 Jul; 133(1-2):48-61. PubMed ID: 19447512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage.
    Lindqvist R; Lindblad M
    Int J Food Microbiol; 2009 Jan; 129(1):59-67. PubMed ID: 19064299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.