These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 18579516)
21. ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols. Nakanishi-Matsui M; Sekiya M; Futai M Biochim Biophys Acta; 2016 Feb; 1857(2):129-140. PubMed ID: 26589785 [TBL] [Abstract][Full Text] [Related]
22. Lysine 155 in beta-subunit is a catalytic residue of Escherichia coli F1 ATPase. Senior AE; Wilke-Mounts S; al-Shawi MK J Biol Chem; 1993 Apr; 268(10):6989-94. PubMed ID: 8463232 [TBL] [Abstract][Full Text] [Related]
23. Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ. Fillingame RH; Dmitriev OY Biochim Biophys Acta; 2002 Oct; 1565(2):232-45. PubMed ID: 12409198 [TBL] [Abstract][Full Text] [Related]
24. Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences. Aggeler R; Haughton MA; Capaldi RA J Biol Chem; 1995 Apr; 270(16):9185-91. PubMed ID: 7721834 [TBL] [Abstract][Full Text] [Related]
25. The beta G156C substitution in the F1-ATPase from the thermophilic Bacillus PS3 affects catalytic site cooperativity by destabilizing the closed conformation of the catalytic site. Bandyopadhyay S; Valder CR; Huynh HG; Ren H; Allison WS Biochemistry; 2002 Dec; 41(48):14421-9. PubMed ID: 12450409 [TBL] [Abstract][Full Text] [Related]
26. Interaction between γC87 and γR242 residues participates in energy coupling between catalysis and proton translocation in Escherichia coli ATP synthase. Li Y; Ma X; Weber J Biochim Biophys Acta Bioenerg; 2019 Aug; 1860(8):679-687. PubMed ID: 31251901 [TBL] [Abstract][Full Text] [Related]
27. Oxidation of the alpha(3)(betaD311C/R333C)(3)gamma subcomplex of the thermophilic Bacillus PS3 F(1)-ATPase indicates that only two beta subunits can exist in the closed conformation simultaneously. Ren H; Dou C; Stelzer MS; Allison WS J Biol Chem; 1999 Oct; 274(44):31366-72. PubMed ID: 10531337 [TBL] [Abstract][Full Text] [Related]
28. The carboxyl-terminal helical domain of the ATP synthase γ subunit is involved in ε subunit conformation and energy coupling. Yamakita A; Liu Y; Futai M; Iwamoto-Kihara A Biochim Biophys Acta Bioenerg; 2019 May; 1860(5):361-368. PubMed ID: 30876890 [TBL] [Abstract][Full Text] [Related]
29. Stepwise propagation of the ATP-induced conformational change of the F1-ATPase beta subunit revealed by NMR. Yagi H; Kajiwara N; Iwabuchi T; Izumi K; Yoshida M; Akutsu H J Biol Chem; 2009 Jan; 284(4):2374-82. PubMed ID: 19028677 [TBL] [Abstract][Full Text] [Related]
30. Assembly of the stator in Escherichia coli ATP synthase. Complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. Senior AE; Muharemagić A; Wilke-Mounts S Biochemistry; 2006 Dec; 45(51):15893-902. PubMed ID: 17176112 [TBL] [Abstract][Full Text] [Related]
31. The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. van Raaij MJ; Abrahams JP; Leslie AG; Walker JE Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6913-7. PubMed ID: 8692918 [TBL] [Abstract][Full Text] [Related]
32. A subunit interaction in chloroplast ATP synthase determined by genetic complementation between chloroplast and bacterial ATP synthase genes. Chen Z; Spies A; Hein R; Zhou X; Thomas BC; Richter ML; Gegenheimer P J Biol Chem; 1995 Jul; 270(29):17124-32. PubMed ID: 7615507 [TBL] [Abstract][Full Text] [Related]
33. Binding of phytopolyphenol piceatannol disrupts β/γ subunit interactions and rate-limiting step of steady-state rotational catalysis in Escherichia coli F1-ATPase. Sekiya M; Nakamoto RK; Nakanishi-Matsui M; Futai M J Biol Chem; 2012 Jun; 287(27):22771-80. PubMed ID: 22582396 [TBL] [Abstract][Full Text] [Related]
34. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Duncan TM; Bulygin VV; Zhou Y; Hutcheon ML; Cross RL Proc Natl Acad Sci U S A; 1995 Nov; 92(24):10964-8. PubMed ID: 7479919 [TBL] [Abstract][Full Text] [Related]
37. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics. Nakanishi-Matsui M; Sekiya M; Futai M IUBMB Life; 2013 Mar; 65(3):247-54. PubMed ID: 23441040 [TBL] [Abstract][Full Text] [Related]
38. Stability of the Escherichia coli ATP synthase F0F1 complex is dependent on interactions between gamma Gln-269 and the beta subunit loop beta Asp-301-beta Asp-305. Omote H; Tainaka K; Fujie K; Iwamoto-Kihara A; Wada Y; Futai M Arch Biochem Biophys; 1998 Oct; 358(2):277-82. PubMed ID: 9784240 [TBL] [Abstract][Full Text] [Related]
39. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Kityk R; Kopp J; Sinning I; Mayer MP Mol Cell; 2012 Dec; 48(6):863-74. PubMed ID: 23123194 [TBL] [Abstract][Full Text] [Related]
40. Inhibition of F1-ATPase rotational catalysis by the carboxyl-terminal domain of the ϵ subunit. Nakanishi-Matsui M; Sekiya M; Yano S; Futai M J Biol Chem; 2014 Oct; 289(44):30822-30831. PubMed ID: 25228697 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]