BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18579728)

  • 41. Opposing effects of contextual surround in human early visual cortex revealed by functional magnetic resonance imaging with continuously modulated visual stimuli.
    Tajima S; Watanabe M; Imai C; Ueno K; Asamizuya T; Sun P; Tanaka K; Cheng K
    J Neurosci; 2010 Mar; 30(9):3264-70. PubMed ID: 20203185
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Supramodal effects of covert spatial orienting triggered by visual or tactile events.
    Macaluso E; Frith CD; Driver J
    J Cogn Neurosci; 2002 Apr; 14(3):389-401. PubMed ID: 11970799
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts.
    Heinen K; Feredoes E; Ruff CC; Driver J
    Neuropsychologia; 2017 May; 99():81-91. PubMed ID: 28254653
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3-Dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex.
    Constantin AG; Wang H; Monteon JA; Martinez-Trujillo JC; Crawford JD
    Neuroscience; 2009 Dec; 164(3):1284-302. PubMed ID: 19733631
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention.
    Dale CL; Simpson GV; Foxe JJ; Luks TL; Worden MS
    Exp Brain Res; 2008 Jun; 188(1):45-62. PubMed ID: 18347786
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the role of suppression in spatial attention: evidence from negative BOLD in human subcortical and cortical structures.
    Gouws AD; Alvarez I; Watson DM; Uesaki M; Rodgers J; Morland AB
    J Neurosci; 2014 Jul; 34(31):10347-60. PubMed ID: 25080595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bottom-up dependent gating of frontal signals in early visual cortex.
    Ekstrom LB; Roelfsema PR; Arsenault JT; Bonmassar G; Vanduffel W
    Science; 2008 Jul; 321(5887):414-7. PubMed ID: 18635806
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Foveal attention modulates responses to peripheral stimuli.
    Vanni S; Uutela K
    J Neurophysiol; 2000 Apr; 83(4):2443-52. PubMed ID: 10758145
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of inferior frontal junction in controlling the spatially global effect of feature-based attention in human visual areas.
    Zhang X; Mlynaryk N; Ahmed S; Japee S; Ungerleider LG
    PLoS Biol; 2018 Jun; 16(6):e2005399. PubMed ID: 29939981
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial stimulus configuration and attentional selection: extrastriate and superior parietal interactions.
    Gillebert CR; Caspari N; Wagemans J; Peeters R; Dupont P; Vandenberghe R
    Cereb Cortex; 2013 Dec; 23(12):2840-54. PubMed ID: 22941718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Role of Top-Down Focused Spatial Attention in Preattentive Salience Coding and Salience-based Attentional Capture.
    Bertleff S; Fink GR; Weidner R
    J Cogn Neurosci; 2016 Aug; 28(8):1152-65. PubMed ID: 27054402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased activity in human visual cortex during directed attention in the absence of visual stimulation.
    Kastner S; Pinsk MA; De Weerd P; Desimone R; Ungerleider LG
    Neuron; 1999 Apr; 22(4):751-61. PubMed ID: 10230795
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements?
    Marzocchi N; Breveglieri R; Galletti C; Fattori P
    Eur J Neurosci; 2008 Feb; 27(3):775-89. PubMed ID: 18279330
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effects of spatial attention in early human visual cortex are stimulus independent.
    Murray SO
    J Vis; 2008 Aug; 8(10):2.1-11. PubMed ID: 19146344
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.
    Sheremata SL; Somers DC; Shomstein S
    J Neurosci; 2018 Feb; 38(6):1511-1519. PubMed ID: 29311140
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distinct representations for shifts of spatial attention and changes of reward contingencies in the human brain.
    Tosoni A; Shulman GL; Pope AL; McAvoy MP; Corbetta M
    Cortex; 2013 Jun; 49(6):1733-49. PubMed ID: 22578709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. What is "odd" in Posner's location-cueing paradigm? Neural responses to unexpected location and feature changes compared.
    Vossel S; Weidner R; Thiel CM; Fink GR
    J Cogn Neurosci; 2009 Jan; 21(1):30-41. PubMed ID: 18476756
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Attention governs action in the primate frontal eye field.
    Schafer RJ; Moore T
    Neuron; 2007 Nov; 56(3):541-51. PubMed ID: 17988636
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.
    Thut G; Nietzel A; Brandt SA; Pascual-Leone A
    J Neurosci; 2006 Sep; 26(37):9494-502. PubMed ID: 16971533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.