These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18579771)

  • 61. FragQA: predicting local fragment quality of a sequence-structure alignment.
    Gao X; Bu D; Li SC; Xu J; Li M
    Genome Inform; 2007; 19():27-39. PubMed ID: 18546502
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A novel approach to decoy set generation: designing a physical energy function having local minima with native structure characteristics.
    Keasar C; Levitt M
    J Mol Biol; 2003 May; 329(1):159-74. PubMed ID: 12742025
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Supersecondary Structures and Fragment Libraries.
    Trevizani R; Custódio FL
    Methods Mol Biol; 2019; 1958():283-295. PubMed ID: 30945224
    [TBL] [Abstract][Full Text] [Related]  

  • 64. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.
    Borguesan B; Inostroza-Ponta M; Dorn M
    J Comput Biol; 2017 Mar; 24(3):255-265. PubMed ID: 27494258
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Five hierarchical levels of sequence-structure correlation in proteins.
    Bystroff C; Shao Y; Yuan X
    Appl Bioinformatics; 2004; 3(2-3):97-104. PubMed ID: 15693735
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identifying sequence regions undergoing conformational change via predicted continuum secondary structure.
    Bodén M; Bailey TL
    Bioinformatics; 2006 Aug; 22(15):1809-14. PubMed ID: 16720586
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Some of the most interesting CASP11 targets through the eyes of their authors.
    Kryshtafovych A; Moult J; Baslé A; Burgin A; Craig TK; Edwards RA; Fass D; Hartmann MD; Korycinski M; Lewis RJ; Lorimer D; Lupas AN; Newman J; Peat TS; Piepenbrink KH; Prahlad J; van Raaij MJ; Rohwer F; Segall AM; Seguritan V; Sundberg EJ; Singh AK; Wilson MA; Schwede T
    Proteins; 2016 Sep; 84 Suppl 1(Suppl Suppl 1):34-50. PubMed ID: 26473983
    [TBL] [Abstract][Full Text] [Related]  

  • 68. SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins.
    Edwards RJ; Davey NE; Shields DC
    PLoS One; 2007 Oct; 2(10):e967. PubMed ID: 17912346
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Selection of sequence motifs and generative Hopfield-Potts models for protein families.
    Shimagaki K; Weigt M
    Phys Rev E; 2019 Sep; 100(3-1):032128. PubMed ID: 31639992
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design.
    Campbell A; Yim J; Barzilay R; Rainforth T; Jaakkola T
    ArXiv; 2024 Jun; ():. PubMed ID: 38883240
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Trends in template/fragment-free protein structure prediction.
    Zhou Y; Duan Y; Yang Y; Faraggi E; Lei H
    Theor Chem Acc; 2011 Jan; 128(1):3-16. PubMed ID: 21423322
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Incorporating Target-Specific Pharmacophoric Information into Deep Generative Models for Fragment Elaboration.
    Hadfield TE; Imrie F; Merritt A; Birchall K; Deane CM
    J Chem Inf Model; 2022 May; 62(10):2280-2292. PubMed ID: 35499971
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Generative models for protein structures and sequences.
    Hsu C; Fannjiang C; Listgarten J
    Nat Biotechnol; 2024 Feb; 42(2):196-199. PubMed ID: 38361069
    [No Abstract]   [Full Text] [Related]  

  • 74. Chromosome structure modeling tools and their evaluation in bacteria.
    Liu T; Qiu QT; Hua KJ; Ma BG
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385874
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Low-resolution description of the conformational space for intrinsically disordered proteins.
    Förster D; Idier J; Liberti L; Mucherino A; Lin JH; Malliavin TE
    Sci Rep; 2022 Nov; 12(1):19057. PubMed ID: 36352011
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Geometry-based distance for clustering amino acids.
    Abushilah SF; Taylor CC; Gusnanto A
    J Appl Stat; 2020; 47(7):1235-1250. PubMed ID: 35707020
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Two-Step Clustering Approach for Metastable States Learning.
    Jiang H; Fan X
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34205252
    [TBL] [Abstract][Full Text] [Related]  

  • 78. SPECS: Integration of side-chain orientation and global distance-based measures for improved evaluation of protein structural models.
    Alapati R; Shuvo MH; Bhattacharya D
    PLoS One; 2020; 15(2):e0228245. PubMed ID: 32053611
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13).
    Senior AW; Evans R; Jumper J; Kirkpatrick J; Sifre L; Green T; Qin C; Žídek A; Nelson AWR; Bridgland A; Penedones H; Petersen S; Simonyan K; Crossan S; Kohli P; Jones DT; Silver D; Kavukcuoglu K; Hassabis D
    Proteins; 2019 Dec; 87(12):1141-1148. PubMed ID: 31602685
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A fragment based method for modeling of protein segments into cryo-EM density maps.
    Ismer J; Rose AS; Tiemann JKS; Hildebrand PW
    BMC Bioinformatics; 2017 Nov; 18(1):475. PubMed ID: 29132296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.