These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 18579777)

  • 1. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly.
    Xue WF; Homans SW; Radford SE
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8926-31. PubMed ID: 18579777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of Mutant Huntingtin Exon-1 Fragments into Large Complex Fibrillar Structures Involves Nucleated Branching.
    Wagner AS; Politi AZ; Ast A; Bravo-Rodriguez K; Baum K; Buntru A; Strempel NU; Brusendorf L; Hänig C; Boeddrich A; Plassmann S; Klockmeier K; Ramirez-Anguita JM; Sanchez-Garcia E; Wolf J; Wanker EE
    J Mol Biol; 2018 Jun; 430(12):1725-1744. PubMed ID: 29601786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloid fibrillation kinetics: insight from atomistic nucleation theory.
    Cabriolu R; Auer S
    J Mol Biol; 2011 Aug; 411(1):275-85. PubMed ID: 21645521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin.
    Raman B; Ban T; Sakai M; Pasta SY; Ramakrishna T; Naiki H; Goto Y; Rao ChM
    Biochem J; 2005 Dec; 392(Pt 3):573-81. PubMed ID: 16053447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards an understanding of the structural molecular mechanism of beta(2)-microglobulin amyloid formation in vitro.
    Radford SE; Gosal WS; Platt GW
    Biochim Biophys Acta; 2005 Nov; 1753(1):51-63. PubMed ID: 16099226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apolipoprotein C-II amyloid fibrils assemble via a reversible pathway that includes fibril breaking and rejoining.
    Binger KJ; Pham CL; Wilson LM; Bailey MF; Lawrence LJ; Schuck P; Howlett GJ
    J Mol Biol; 2008 Feb; 376(4):1116-29. PubMed ID: 18206908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Globular tetramers of beta(2)-microglobulin assemble into elaborate amyloid fibrils.
    White HE; Hodgkinson JL; Jahn TR; Cohen-Krausz S; Gosal WS; Müller S; Orlova EV; Radford SE; Saibil HR
    J Mol Biol; 2009 May; 389(1):48-57. PubMed ID: 19345691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competing pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid.
    Gosal WS; Morten IJ; Hewitt EW; Smith DA; Thomson NH; Radford SE
    J Mol Biol; 2005 Aug; 351(4):850-64. PubMed ID: 16024039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transthyretin aggregation under partially denaturing conditions is a downhill polymerization.
    Hurshman AR; White JT; Powers ET; Kelly JW
    Biochemistry; 2004 Jun; 43(23):7365-81. PubMed ID: 15182180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibril growth kinetics reveal a region of beta2-microglobulin important for nucleation and elongation of aggregation.
    Platt GW; Routledge KE; Homans SW; Radford SE
    J Mol Biol; 2008 Apr; 378(1):251-63. PubMed ID: 18342332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory.
    Kashchiev D
    Biophys J; 2015 Nov; 109(10):2126-36. PubMed ID: 26588571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary nucleation in amyloid formation.
    Törnquist M; Michaels TCT; Sanagavarapu K; Yang X; Meisl G; Cohen SIA; Knowles TPJ; Linse S
    Chem Commun (Camb); 2018 Aug; 54(63):8667-8684. PubMed ID: 29978862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular pathogenesis of human amyloidosis: Lessons from β2 -microglobulin-related amyloidosis.
    Naiki H; Okoshi T; Ozawa D; Yamaguchi I; Hasegawa K
    Pathol Int; 2016 Apr; 66(4):193-201. PubMed ID: 26969800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalently attached fatty acyl chains alter the aggregation behavior of an amyloidogenic peptide derived from human β(2)-microglobulin.
    Rawat A; Nagaraj R
    J Pept Sci; 2013 Dec; 19(12):770-83. PubMed ID: 24243599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of oligomeric species formed in the early stages of amyloid fibril formation using electrospray ionisation mass spectrometry.
    Smith AM; Jahn TR; Ashcroft AE; Radford SE
    J Mol Biol; 2006 Nov; 364(1):9-19. PubMed ID: 17005201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in Protein Concentration Dependence for Nucleation and Elongation in Light Chain Amyloid Formation.
    Blancas-Mejía LM; Misra P; Ramirez-Alvarado M
    Biochemistry; 2017 Feb; 56(5):757-766. PubMed ID: 28074646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of fibril formation by polyalanine peptides.
    Nguyen HD; Hall CK
    J Biol Chem; 2005 Mar; 280(10):9074-82. PubMed ID: 15591317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.