These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 18579899)

  • 1. Validation of the RT3 accelerometer for measuring physical activity of children in simulated free-living conditions.
    Sun DX; Schmidt G; Teo-Koh SM
    Pediatr Exerc Sci; 2008 May; 20(2):181-97. PubMed ID: 18579899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis.
    Howe CA; Staudenmayer JW; Freedson PS
    Med Sci Sports Exerc; 2009 Dec; 41(12):2199-206. PubMed ID: 19915498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of the RT3 in the measurement of physical activity in children.
    Hussey J; Bennett K; Dwyer JO; Langford S; Bell C; Gormley J
    J Sci Med Sport; 2009 Jan; 12(1):130-3. PubMed ID: 18069065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men.
    Villars C; Bergouignan A; Dugas J; Antoun E; Schoeller DA; Roth H; Maingon AC; Lefai E; Blanc S; Simon C
    J Appl Physiol (1985); 2012 Dec; 113(11):1763-71. PubMed ID: 23019315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of energy expenditure in children using the RT3 accelerometer.
    Kavouras SA; Sarras SE; Tsekouras YE; Sidossis LS
    J Sports Sci; 2008 Jul; 26(9):959-66. PubMed ID: 18569562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating energy expenditure with the RT3 triaxial accelerometer.
    Maddison R; Jiang Y; Hoorn SV; Mhurchu CN; Lawes CM; Rodgers A; Rush E
    Res Q Exerc Sport; 2009 Jun; 80(2):249-56. PubMed ID: 19650390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluations of Actiheart, IDEEA® and RT3 monitors for estimating activity energy expenditure in free-living women.
    Löf M; Henriksson H; Forsum E
    J Nutr Sci; 2013; 2():e31. PubMed ID: 25191581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of energy expenditure for physical activity using a triaxial accelerometer.
    Bouten CV; Westerterp KR; Verduin M; Janssen JD
    Med Sci Sports Exerc; 1994 Dec; 26(12):1516-23. PubMed ID: 7869887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the RT3 Research Tracker and Tritrac R3D accelerometers.
    DeVoe D; Gotshall R; McArthur T
    Percept Mot Skills; 2003 Oct; 97(2):510-8. PubMed ID: 14620239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of uniaxial accelerometry during activities of daily living in children.
    Eisenmann JC; Strath SJ; Shadrick D; Rigsby P; Hirsch N; Jacobson L
    Eur J Appl Physiol; 2004 Mar; 91(2-3):259-63. PubMed ID: 14569402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and calibration of an accelerometer in preschool children.
    Pate RR; Almeida MJ; McIver KL; Pfeiffer KA; Dowda M
    Obesity (Silver Spring); 2006 Nov; 14(11):2000-6. PubMed ID: 17135617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of the RT3 triaxial accelerometer for the assessment of physical activity.
    Rowlands AV; Thomas PW; Eston RG; Topping R
    Med Sci Sports Exerc; 2004 Mar; 36(3):518-24. PubMed ID: 15076796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of the RT3 accelerometer for various patterns of physical activity in children and adolescents.
    Vanhelst J; Béghin L; Rasoamanana P; Theunynck D; Meskini T; Iliescu C; Duhamel A; Turck D; Gottrand F
    J Sports Sci; 2010 Feb; 28(4):381-7. PubMed ID: 20175015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative validity of 3 accelerometer models for estimating energy expenditure during light activity.
    Wetten AA; Batterham M; Tan SY; Tapsell L
    J Phys Act Health; 2014 Mar; 11(3):638-47. PubMed ID: 23417054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review.
    Jeran S; Steinbrecher A; Pischon T
    Int J Obes (Lond); 2016 Aug; 40(8):1187-97. PubMed ID: 27163747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerometer output and MET values of common physical activities.
    Kozey SL; Lyden K; Howe CA; Staudenmayer JW; Freedson PS
    Med Sci Sports Exerc; 2010 Sep; 42(9):1776-84. PubMed ID: 20142781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of uniaxial and triaxial accelerometers for the assessment of physical activity in preschool children.
    Adolph AL; Puyau MR; Vohra FA; Nicklas TA; Zakeri IF; Butte NF
    J Phys Act Health; 2012 Sep; 9(7):944-53. PubMed ID: 22207582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation and calibration of physical activity monitors in children.
    Puyau MR; Adolph AL; Vohra FA; Butte NF
    Obes Res; 2002 Mar; 10(3):150-7. PubMed ID: 11886937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy expenditure and physical activity of obese and non-obese Thai children.
    Sanguanrungsirikul S; Somboonwong J; Nakhnahup C; Pruksananonda C
    J Med Assoc Thai; 2001 Jun; 84 Suppl 1():S314-20. PubMed ID: 11529350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring free-living physical activity in adults with and without neurologic dysfunction with a triaxial accelerometer.
    Hale LA; Pal J; Becker I
    Arch Phys Med Rehabil; 2008 Sep; 89(9):1765-71. PubMed ID: 18760161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.