These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 18580182)

  • 1. Cholinesterase inhibitor donepezil dilates cerebral parenchymal arterioles via the activation of neuronal nitric oxide synthase.
    Nakahata K; Kinoshita H; Hama-Tomioka K; Ishida Y; Matsuda N; Hatakeyama N; Haba M; Kondo T; Hatano Y
    Anesthesiology; 2008 Jul; 109(1):124-9. PubMed ID: 18580182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propofol restores brain microvascular function impaired by high glucose via the decrease in oxidative stress.
    Nakahata K; Kinoshita H; Azma T; Matsuda N; Hama-Tomioka K; Haba M; Hatano Y
    Anesthesiology; 2008 Feb; 108(2):269-75. PubMed ID: 18212572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of nitric oxide synthase isoforms to cholinergic vasodilation in murine retinal arterioles.
    Gericke A; Goloborodko E; Sniatecki JJ; Steege A; Wojnowski L; Pfeiffer N
    Exp Eye Res; 2013 Apr; 109():60-6. PubMed ID: 23434456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impairment of neuronal nitric oxide synthase-dependent dilation of cerebral arterioles during chronic alcohol consumption.
    Sun H; Patel KP; Mayhan WG
    Alcohol Clin Exp Res; 2002 May; 26(5):663-70. PubMed ID: 12045474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of cerebral arterioles in mice deficient in expression of the gene for endothelial nitric oxide synthase.
    Baumbach GL; Sigmund CD; Faraci FM
    Circ Res; 2004 Oct; 95(8):822-9. PubMed ID: 15388643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscarinic--but not nicotinic--acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype.
    Elhusseiny A; Hamel E
    J Cereb Blood Flow Metab; 2000 Feb; 20(2):298-305. PubMed ID: 10698067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of neuronal nitric oxide synthase, oxidative stress, and propofol in N-methyl-D-aspartate-induced dilatation of cerebral arterioles.
    Hama-Tomioka K; Kinoshita H; Nakahata K; Kondo T; Azma T; Kawahito S; Hatakeyama N; Matsuda N
    Br J Anaesth; 2012 Jan; 108(1):21-9. PubMed ID: 22086508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sildenafil (Viagra) evokes retinal arteriolar dilation: dual pathways via NOS activation and phosphodiesterase inhibition.
    Yuan Z; Hein TW; Rosa RH; Kuo L
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):720-5. PubMed ID: 18235020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simvastatin elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and mevalonate-rho kinase pathways.
    Nagaoka T; Hein TW; Yoshida A; Kuo L
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):825-32. PubMed ID: 17251484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced acetylcholine-induced dilation in afferent arterioles in simvastatin-fed rats.
    Inman SR; Caprio TW; Drummond E; Mueller M; Entenman K
    Vascul Pharmacol; 2006 Jan; 44(1):17-21. PubMed ID: 16290053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuation of nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles induced by acetylcholine in streptozotocin-treated rats.
    Nakazawa T; Kaneko Y; Mori A; Saito M; Sakamoto K; Nakahara T; Ishii K
    Vascul Pharmacol; 2007 Mar; 46(3):153-9. PubMed ID: 17079193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of contribution of nitric oxide synthase to cholinergic vasodilation in murine renal afferent arterioles.
    Park S; Bivona BJ; Harrison-Bernard LM
    Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1197-F1204. PubMed ID: 29412691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible involvement of neuronal nitric oxide synthase enzyme in early-phase isoflurane-induced hypotension in rats.
    Ellenberger EA; Lucas HL; Mueller JL; Barrington PL; Chung E; Ohgami Y; Quock RM
    Life Sci; 2004 Dec; 76(5):499-507. PubMed ID: 15556163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo.
    Seddon MD; Chowienczyk PJ; Brett SE; Casadei B; Shah AM
    Circulation; 2008 Apr; 117(15):1991-6. PubMed ID: 18391107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-NAME prevents GM1 ganglioside-induced vasodilation in the rat brain.
    Furian AF; Oliveira MS; Magni DV; Souza MA; Bortoluzzi VT; Bueno LM; Royes LF; Mello CF
    Neurochem Int; 2008 Dec; 53(6-8):362-9. PubMed ID: 18835310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endotoxin releases a substance from the aorta that dilates an isolated arteriole by up-regulating INOS.
    Viol AW; Prewitt RL; Doviak M; Britt LD
    J Surg Res; 2005 Aug; 127(2):106-11. PubMed ID: 15921695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of μ-opioid receptors dilates retinal arterioles by neuronal nitric oxide synthase-derived nitric oxide in rats.
    Someya E; Mori A; Sakamoto K; Ishii K; Nakahara T
    Eur J Pharmacol; 2017 May; 803():124-129. PubMed ID: 28341346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired nitric oxide- and endothelium-derived hyperpolarizing factor-dependent dilation of renal afferent arteriole in Dahl salt-sensitive rats.
    Ozawa Y; Hayashi K; Kanda T; Homma K; Takamatsu I; Tatematsu S; Yoshioka K; Kumagai H; Wakino S; Saruta T
    Nephrology (Carlton); 2004 Oct; 9(5):272-7. PubMed ID: 15504139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels.
    Hein TW; Xu W; Kuo L
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):693-9. PubMed ID: 16431969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.