BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18581061)

  • 1. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia.
    Yamaoka H; Yamashita Y; Ferri S; Sode K
    Biotechnol Lett; 2008 Nov; 30(11):1967-72. PubMed ID: 18581061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.
    Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K
    Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.
    Shiota M; Yamazaki T; Yoshimatsu K; Kojima K; Tsugawa W; Ferri S; Sode K
    Bioelectrochemistry; 2016 Dec; 112():178-83. PubMed ID: 26951961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and functional expression of glucose dehydrogenase complex of Burkholderia cepacia in Escherichia coli.
    Tsuya T; Ferri S; Fujikawa M; Yamaoka H; Sode K
    J Biotechnol; 2006 May; 123(2):127-36. PubMed ID: 16337300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase.
    Yamashita Y; Suzuki N; Hirose N; Kojima K; Tsugawa W; Sode K
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofuel cell system employing thermostable glucose dehydrogenase.
    Okuda-Shimazaki J; Kakehi N; Yamazaki T; Tomiyama M; Sode K
    Biotechnol Lett; 2008 Oct; 30(10):1753-8. PubMed ID: 18516502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers.
    Lee I; Loew N; Tsugawa W; Lin CE; Probst D; La Belle JT; Sode K
    Bioelectrochemistry; 2018 Jun; 121():1-6. PubMed ID: 29291433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mutant sarcosine oxidase in which activity depends on flavin adenine dinucleotide.
    Nishiya Y
    Protein Expr Purif; 2000 Oct; 20(1):95-7. PubMed ID: 11035956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance enzyme fuel cells using a genetically expressed FAD-dependent glucose dehydrogenase α-subunit of Burkholderia cepacia immobilized in a carbon nanotube electrode for low glucose conditions.
    Fapyane D; Lee SJ; Kang SH; Lim DH; Cho KK; Nam TH; Ahn JP; Ahn JH; Kim SW; Chang IS
    Phys Chem Chem Phys; 2013 Jun; 15(24):9508-12. PubMed ID: 23695009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous chemical reversion of an active site mutation: deamidation of an asparagine residue replacing the catalytic aspartic acid of glutamate dehydrogenase.
    Paradisi F; Dean JL; Geoghegan KF; Engel PC
    Biochemistry; 2005 Mar; 44(9):3636-43. PubMed ID: 15736973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Lys-308 in the FAD-dependent oxidase activity of NADH dehydrogenase from an alkaliphilic Bacillus.
    Kitazume Y; Mutoh M; Shiraki M; Koyama N
    Res Microbiol; 2006 Dec; 157(10):956-9. PubMed ID: 17097855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential role of the small subunit of thermostable glucose dehydrogenase from Burkholderia cepacia.
    Yamaoka H; Ferri S; Fujikawa M; Sode K
    Biotechnol Lett; 2004 Nov; 26(22):1757-61. PubMed ID: 15604831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis.
    Rhimi M; Juy M; Aghajari N; Haser R; Bejar S
    J Bacteriol; 2007 May; 189(9):3556-63. PubMed ID: 17337581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of fungus-derived FAD glucose dehydrogenase.
    Yoshida H; Sakai G; Mori K; Kojima K; Kamitori S; Sode K
    Sci Rep; 2015 Aug; 5():13498. PubMed ID: 26311535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies with lysine N6-hydroxylase. Effect of a mutation in the assumed FAD binding site on coenzyme affinities and on lysine hydroxylating activity.
    Stehr M; Smau L; Singh M; Seth O; Macheroux P; Ghisla S; Diekmann H
    Biol Chem; 1999 Jan; 380(1):47-54. PubMed ID: 10064136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A.
    Wille G; Ritter M; Weiss MS; König S; Mäntele W; Hübner G
    Biochemistry; 2005 Apr; 44(13):5086-94. PubMed ID: 15794646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in AxDGC2 from Acetobacter xylinum.
    Qi Y; Rao F; Luo Z; Liang ZX
    Biochemistry; 2009 Nov; 48(43):10275-85. PubMed ID: 19785462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-guided mutagenesis for the improvement of substrate specificity of Bacillus megaterium glucose 1-dehydrogenase IV.
    Nishioka T; Yasutake Y; Nishiya Y; Tamura T
    FEBS J; 2012 Sep; 279(17):3264-75. PubMed ID: 22804868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Flavin-Adenine Dinucleotide Glucose Dehydrogenase Fused to a Minimal Cytochrome C Domain.
    Algov I; Grushka J; Zarivach R; Alfonta L
    J Am Chem Soc; 2017 Dec; 139(48):17217-17220. PubMed ID: 28915057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression, characterization and mutagenesis of an FAD-dependent glucose dehydrogenase from Aspergillus terreus.
    Yang Y; Huang L; Wang J; Xu Z
    Enzyme Microb Technol; 2015 Jan; 68():43-9. PubMed ID: 25435504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.