These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 18581182)

  • 1. Navigational strategies used by insects to find distant, wind-borne sources of odor.
    Cardé RT; Willis MA
    J Chem Ecol; 2008 Jul; 34(7):854-66. PubMed ID: 18581182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, Periplaneta americana (L.).
    Willis MA; Avondet JL; Finnell AS
    J Exp Biol; 2008 Jul; 211(Pt 14):2317-26. PubMed ID: 18587126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking
    Demir M; Kadakia N; Anderson HD; Clark DA; Emonet T
    Elife; 2020 Nov; 9():. PubMed ID: 33140723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Navigation Along Windborne Plumes of Pheromone and Resource-Linked Odors.
    Cardé RT
    Annu Rev Entomol; 2021 Jan; 66():317-336. PubMed ID: 32926790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial memory-based behaviors for locating sources of odor plumes.
    Grünbaum D; Willis MA
    Mov Ecol; 2015; 3(1):11. PubMed ID: 25960875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Odor-modulated orientation in walking male cockroaches Periplaneta americana, and the effects of odor plumes of different structure.
    Willis MA; Avondet JL
    J Exp Biol; 2005 Feb; 208(Pt 4):721-35. PubMed ID: 15695764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of odor plume-tracking behavior of walking and flying insects in different turbulent environments.
    Talley JL; White EB; Willis MA
    J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36354120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One antenna, two antennae, big antennae, small: total antennae length, not bilateral symmetry, predicts odor-tracking performance in the American cockroach Periplaneta americana.
    Lockey JK; Willis MA
    J Exp Biol; 2015 Jul; 218(Pt 14):2156-65. PubMed ID: 25987729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracting spatial information from temporal odor patterns: insights from insects.
    Szyszka P; Emonet T; Edwards TL
    Curr Opin Insect Sci; 2023 Oct; 59():101082. PubMed ID: 37419251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Odor tracking flight of male Manduca sexta moths along plumes of different cross-sectional area.
    Willis MA; Ford EA; Avondet JL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Nov; 199(11):1015-36. PubMed ID: 24081678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-surface wind variability over spatiotemporal scales relevant to plume tracking insects.
    Houle J; van Breugel F
    Phys Fluids (1994); 2023 May; 35(5):. PubMed ID: 37822569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odor source localization in complex visual environments by fruit flies.
    Saxena N; Natesan D; Sane SP
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29146771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and discrimination of mixed odor strands in overlapping plumes using an insect-antenna-based chemosensor system.
    Myrick AJ; Park KC; Hetling JR; Baker TC
    J Chem Ecol; 2009 Jan; 35(1):118-30. PubMed ID: 19153799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Wind Tunnel for Odor Mediated Insect Behavioural Assays.
    Knudsen GK; Tasin M; Aak A; Thöming G
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30582608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis.
    Gardiner JM; Atema J
    J Exp Biol; 2007 Jun; 210(Pt 11):1925-34. PubMed ID: 17515418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additional Navigational Strategies Can Augment Odor-Gated Rheotaxis for Navigation under Conditions of Variable Flow.
    Vasey G; Lukeman R; Wyeth RC
    Integr Comp Biol; 2015 Sep; 55(3):447-60. PubMed ID: 26116202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bio-hybrid odor-guided autonomous palm-sized air vehicle.
    Anderson MJ; Sullivan JG; Horiuchi TK; Fuller SB; Daniel TL
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33002883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal novelty detection and multiple timescale integration drive Drosophila orientation dynamics in temporally diverse olfactory environments.
    Jayaram V; Sehdev A; Kadakia N; Brown EA; Emonet T
    PLoS Comput Biol; 2023 May; 19(5):e1010606. PubMed ID: 37167321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.