These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18581233)

  • 1. How much lung ventilation is obtained with only chest-compression CPR?
    Geddes LA; Rundell A; Otlewski M; Pargett M
    Cardiovasc Eng; 2008 Sep; 8(3):145-8. PubMed ID: 18581233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhythmic abdominal compression CPR ventilates without supplemental breaths and provides effective blood circulation.
    Pargett M; Geddes LA; Otlewski MP; Rundell AE
    Resuscitation; 2008 Dec; 79(3):460-7. PubMed ID: 18952355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does compression-only cardiopulmonary resuscitation generate adequate passive ventilation during cardiac arrest?
    Deakin CD; O'Neill JF; Tabor T
    Resuscitation; 2007 Oct; 75(1):53-9. PubMed ID: 17507138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant.
    Nassabeh-Montazami S; Abubakar KM; Keszler M
    Pediatr Pulmonol; 2009 Feb; 44(2):128-33. PubMed ID: 19061234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest.
    Yannopoulos D; Sigurdsson G; McKnite S; Benditt D; Lurie KG
    Resuscitation; 2004 Apr; 61(1):75-82. PubMed ID: 15081185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An assessment of dead space in pulmonary ventilation of the toad Bufo schneideri.
    Fernandes MS; Giusti H; Glass ML
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Dec; 142(4):446-50. PubMed ID: 16257551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous breathing during high-frequency oscillatory ventilation improves regional lung characteristics in experimental lung injury.
    van Heerde M; Roubik K; Kopelent V; Kneyber MC; Markhorst DG
    Acta Anaesthesiol Scand; 2010 Nov; 54(10):1248-56. PubMed ID: 21039346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new cardiopulmonary resuscitation method using only rhythmic abdominal compression: a preliminary report.
    Geddes LA; Rundell A; Lottes A; Kemeny A; Otlewski M
    Am J Emerg Med; 2007 Sep; 25(7):786-90. PubMed ID: 17870482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinically plausible hyperventilation does not exert adverse hemodynamic effects during CPR but markedly reduces end-tidal PCO₂.
    Gazmuri RJ; Ayoub IM; Radhakrishnan J; Motl J; Upadhyaya MP
    Resuscitation; 2012 Feb; 83(2):259-64. PubMed ID: 21854734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of breathing during cortical substitution of the spontaneous automatic respiratory rhythm.
    Haouzi P; Chenuel B; Whipp BJ
    Respir Physiol Neurobiol; 2007 Nov; 159(2):211-8. PubMed ID: 17869591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective assessment of cardiopulmonary resuscitation skills of 10-11-year-old schoolchildren using two different external chest compression to ventilation ratios.
    Hill K; Mohan C; Stevenson M; McCluskey D
    Resuscitation; 2009 Jan; 80(1):96-9. PubMed ID: 18952356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventilation caused by external chest compression is unable to sustain effective gas exchange during CPR: a comparison with mechanical ventilation.
    Idris AH; Banner MJ; Wenzel V; Fuerst RS; Becker LB; Melker RJ
    Resuscitation; 1994 Oct; 28(2):143-50. PubMed ID: 7846374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in tidal volume during cardiopulmonary resuscitation in newborn piglets.
    Li ES; Cheung PY; O'Reilly M; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2015 Nov; 100(6):F530-3. PubMed ID: 26139543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous passive oxygen insufflation results in a similar outcome to positive pressure ventilation in a swine model of out-of-hospital ventricular fibrillation.
    Hayes MM; Ewy GA; Anavy ND; Hilwig RW; Sanders AB; Berg RA; Otto CW; Kern KB
    Resuscitation; 2007 Aug; 74(2):357-65. PubMed ID: 17379381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of ventilation strategies during chest compression. An experimental study with clinical observations.
    Cordioli RL; Lyazidi A; Rey N; Granier JM; Savary D; Brochard L; Richard JC
    J Appl Physiol (1985); 2016 Jan; 120(2):196-203. PubMed ID: 26586906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of tidal volume and respiratory rate on the power of breathing calculation.
    Natalini G; Marchesini M; Tessadrelli A; Rosano A; Candiani A; Bernardini A
    Acta Anaesthesiol Scand; 2005 May; 49(5):643-8. PubMed ID: 15836677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of volume-controlled, pressure-controlled, and chest compression-induced ventilation during cardiopulmonary resuscitation with an automated mechanical chest compression device: A randomized clinical pilot study.
    Fuest K; Dorfhuber F; Lorenz M; von Dincklage F; Mörgeli R; Kuhn KF; Jungwirth B; Kanz KG; Blobner M; Schaller SJ
    Resuscitation; 2021 Sep; 166():85-92. PubMed ID: 34302927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial defibrillation versus initial chest compression in a 4-minute ventricular fibrillation canine model of cardiac arrest.
    Wang YL; Zhong JQ; Tao W; Hou XM; Meng XL; Zhang Y
    Crit Care Med; 2009 Jul; 37(7):2250-2. PubMed ID: 19455026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimizing stomach inflation versus optimizing chest compressions.
    Herff H; Paal P; von Goedecke A; Mitterlechner T; Danninger T; Wenzel V
    Anesth Analg; 2008 Feb; 106(2):535-7, table of contents. PubMed ID: 18227312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breathing mechanics during exercise with added dead space reflect mechanisms of ventilatory control.
    Wood HE; Mitchell GS; Babb TG
    Respir Physiol Neurobiol; 2009 Sep; 168(3):210-7. PubMed ID: 19596464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.