These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 18581266)
1. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans. Bayat O; Sever E; Bayat B; Arslan V; Poole C Appl Biochem Biotechnol; 2009 Jan; 152(1):117-26. PubMed ID: 18581266 [TBL] [Abstract][Full Text] [Related]
2. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Bayat B; Sari B J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247 [TBL] [Abstract][Full Text] [Related]
3. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Wang J; Bai J; Xu J; Liang B J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031 [TBL] [Abstract][Full Text] [Related]
4. Zinc and lead leaching from contaminated industrial waste sludges using coupled processes. Cheikh M; Magnin JP; Gondrexon N; Willison J; Hassen A Environ Technol; 2010 Dec; 31(14):1577-85. PubMed ID: 21275254 [TBL] [Abstract][Full Text] [Related]
5. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665 [TBL] [Abstract][Full Text] [Related]
6. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species. Wang S; Zheng G; Zhou L Water Res; 2010 Oct; 44(18):5423-31. PubMed ID: 20633920 [TBL] [Abstract][Full Text] [Related]
7. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles. Pradhan D; Mishra D; Kim DJ; Ahn JG; Chaudhury GR; Lee SW J Hazard Mater; 2010 Mar; 175(1-3):267-73. PubMed ID: 19879686 [TBL] [Abstract][Full Text] [Related]
8. Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant. Romero J; Yañez C; Vásquez M; Moore ER; Espejo RT Res Microbiol; 2003 Jun; 154(5):353-9. PubMed ID: 12837511 [TBL] [Abstract][Full Text] [Related]
9. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. Yang Y; Chen S; Li S; Chen M; Chen H; Liu B J Biotechnol; 2014 Mar; 173():24-30. PubMed ID: 24445171 [TBL] [Abstract][Full Text] [Related]
10. The effects of Acidithiobacillus ferrooxidans on the leaching of cobalt and strontium adsorbed onto soil particles. Park HS; Lee JU; Ahn JW Environ Geochem Health; 2007 Aug; 29(4):303-12. PubMed ID: 17508258 [TBL] [Abstract][Full Text] [Related]
11. [Bioleaching kinetic of a pyrite mining residue using organic wastes as culture media for Acidithiobacillus ferrooxidans]. Drogui P; Picher S; Mercier G; Blais JF Environ Technol; 2003 Nov; 24(11):1413-23. PubMed ID: 14733394 [TBL] [Abstract][Full Text] [Related]
13. Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching. Wong JWC; Zhou J; Kurade MB; Murugesan K Bioresour Technol; 2015 Mar; 179():78-83. PubMed ID: 25528607 [TBL] [Abstract][Full Text] [Related]
14. The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Mousavi SM; Yaghmaei S; Vossoughi M; Roostaazad R; Jafari A; Ebrahimi M; Chabok OH; Turunen I Bioresour Technol; 2008 May; 99(8):2840-5. PubMed ID: 17698352 [TBL] [Abstract][Full Text] [Related]
15. Bioleaching of iron from laterite soil using an isolated Acidithiobacillus ferrooxidans strain and application of leached laterite iron as Fenton's catalyst in selective herbicide degradation. S B; Manu B; M Y S PLoS One; 2021; 16(3):e0243444. PubMed ID: 33784303 [TBL] [Abstract][Full Text] [Related]
16. Microbial removal of uranium in uranium-bearing black shale. Lee JU; Kim SM; Kim KW; Kim IS Chemosphere; 2005 Mar; 59(1):147-54. PubMed ID: 15698655 [TBL] [Abstract][Full Text] [Related]
17. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species. Li H; Ye M; Zheng L; Xu Y; Sun S; Du Q; Zhong Y; Ye S; Zhang D Water Sci Technol; 2018 May; 2017(2):390-403. PubMed ID: 29851391 [TBL] [Abstract][Full Text] [Related]
18. Organoarsenic resistance and bioremoval of Acidithiobacillus ferrooxidans. Yan L; Yin H; Zhang S; Duan J; Li Y; Chen P; Li H Bioresour Technol; 2010 Aug; 101(16):6572-5. PubMed ID: 20362439 [TBL] [Abstract][Full Text] [Related]
19. Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2-2 and MON-1. Takeuchi F; Sugio T Environ Sci; 2006; 13(6):305-16. PubMed ID: 17273146 [TBL] [Abstract][Full Text] [Related]
20. Comparison of bioleaching behaviors of different compositional sphalerite using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. Xia L; Dai S; Yin C; Hu Y; Liu J; Qiu G J Ind Microbiol Biotechnol; 2009 Jun; 36(6):845-51. PubMed ID: 19333635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]