BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 18581285)

  • 21. Intricate Effects of α-Amino and Lysine Modifications on Arginine Methylation of the N-Terminal Tail of Histone H4.
    Fulton MD; Zhang J; He M; Ho MC; Zheng YG
    Biochemistry; 2017 Jul; 56(28):3539-3548. PubMed ID: 28644004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitor of CBP Histone Acetyltransferase Downregulates p53 Activation and Facilitates Methylation at Lysine 27 on Histone H3.
    Vincek AS; Patel J; Jaganathan A; Green A; Pierre-Louis V; Arora V; Rehmann J; Mezei M; Zhou MM; Ohlmeyer M; Mujtaba S
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30072621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dephosphorylation of p53 Ser 392 Enhances Trimethylation of Histone H3 Lys 9 via SUV39h1 Stabilization in CK2 Downregulation-Mediated Senescence.
    Park JW; Bae YS
    Mol Cells; 2019 Nov; 42(11):773-782. PubMed ID: 31617338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of p53 function by SET8-mediated methylation at lysine 382.
    Shi X; Kachirskaia I; Yamaguchi H; West LE; Wen H; Wang EW; Dutta S; Appella E; Gozani O
    Mol Cell; 2007 Aug; 27(4):636-46. PubMed ID: 17707234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression.
    Wang YA; Kamarova Y; Shen KC; Jiang Z; Hahn MJ; Wang Y; Brooks SC
    Cancer Biol Ther; 2005 Oct; 4(10):1138-43. PubMed ID: 16131836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis.
    Yogosawa S; Yoshida K
    Cancer Sci; 2018 Nov; 109(11):3376-3382. PubMed ID: 30191640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation.
    Nishioka K; Chuikov S; Sarma K; Erdjument-Bromage H; Allis CD; Tempst P; Reinberg D
    Genes Dev; 2002 Feb; 16(4):479-89. PubMed ID: 11850410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of tetramerisation on site-specific post-translational modifications of p53: comparison of human and murine p53 tumor suppressor protein.
    Warnock LJ; Knox A; Mee TR; Raines SA; Milner J
    Cancer Biol Ther; 2008 Sep; 7(9):1481-9. PubMed ID: 18769132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signaling to p53: breaking the posttranslational modification code.
    Appella E; Anderson CW
    Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lysine methylation and the regulation of p53.
    Carr SM; Munro S; La Thangue NB
    Essays Biochem; 2012; 52():79-92. PubMed ID: 22708565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate.
    Knights CD; Catania J; Di Giovanni S; Muratoglu S; Perez R; Swartzbeck A; Quong AA; Zhang X; Beerman T; Pestell RG; Avantaggiati ML
    J Cell Biol; 2006 May; 173(4):533-44. PubMed ID: 16717128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-translational modifications and activation of p53 by genotoxic stresses.
    Appella E; Anderson CW
    Eur J Biochem; 2001 May; 268(10):2764-72. PubMed ID: 11358490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death.
    Lee JH; Kim HS; Lee SJ; Kim KT
    J Cell Sci; 2007 Jul; 120(Pt 13):2259-71. PubMed ID: 17591690
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ING2 recruits histone methyltransferase activity with methylation site specificity distinct from histone H3 lysines 4 and 9.
    Goeman F; Otto K; Kyrylenko S; Schmidt O; Baniahmad A
    Biochim Biophys Acta; 2008 Oct; 1783(10):1673-80. PubMed ID: 18513492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel pyrido-thieno-pyrimidine derivative activates p53 through induction of phosphorylation and acetylation in colorectal cancer cells.
    Kang MA; Kim MS; Kim JY; Shin YJ; Song JY; Jeong JH
    Int J Oncol; 2015 Jan; 46(1):342-50. PubMed ID: 25338966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repression of p53 function by SIRT5-mediated desuccinylation at Lysine 120 in response to DNA damage.
    Liu X; Rong F; Tang J; Zhu C; Chen X; Jia S; Wang Z; Sun X; Deng H; Zha H; Ouyang G; Xiao W
    Cell Death Differ; 2022 Apr; 29(4):722-736. PubMed ID: 34642466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo.
    Kurash JK; Lei H; Shen Q; Marston WL; Granda BW; Fan H; Wall D; Li E; Gaudet F
    Mol Cell; 2008 Feb; 29(3):392-400. PubMed ID: 18280244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crosstalk between CARM1 methylation and CBP acetylation on histone H3.
    Daujat S; Bauer UM; Shah V; Turner B; Berger S; Kouzarides T
    Curr Biol; 2002 Dec; 12(24):2090-7. PubMed ID: 12498683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of acetylation sites in the regulation of p53 activity.
    Wang Y; Chen Y; Chen Q; Zhang X; Wang H; Wang Z; Wang J; Tian C
    Mol Biol Rep; 2020 Jan; 47(1):381-391. PubMed ID: 31680191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression?
    Olsson A; Manzl C; Strasser A; Villunger A
    Cell Death Differ; 2007 Sep; 14(9):1561-75. PubMed ID: 17627286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.