These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18581340)

  • 1. Improved slice selection for R2* mapping during cryoablation with eddy current compensation.
    Lu A; Daniel BL; Pauly JM; Pauly KB
    J Magn Reson Imaging; 2008 Jul; 28(1):190-8. PubMed ID: 18581340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature mapping of frozen tissue using eddy current compensated half excitation RF pulses.
    Wansapura JP; Daniel BL; Pauly J; Butts K
    Magn Reson Med; 2001 Nov; 46(5):985-92. PubMed ID: 11675651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Half radiofrequency pulse excitation with a dedicated prescan to correct eddy current effect and gradient delay.
    Abe T
    Med Phys; 2013 Mar; 40(3):032304. PubMed ID: 23464336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction of B
    Jang H; Athertya JS; Jerban S; Ma Y; Lombardi AF; Chung CB; Chang EY; Du J
    NMR Biomed; 2023 Mar; ():e4939. PubMed ID: 36965076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple compensation method for improved half-pulse excitation profile with rephasing gradient.
    Latta P; Starčuk Z; Kojan M; Gruwel MLH; Tomanek B; Trattnig S; Juras V
    Magn Reson Med; 2020 Oct; 84(4):1796-1805. PubMed ID: 32129544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double half RF pulses for reduced sensitivity to eddy currents in UTE imaging.
    Josan S; Pauly JM; Daniel BL; Pauly KB
    Magn Reson Med; 2009 May; 61(5):1083-9. PubMed ID: 19235919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T1-weighted MR image contrast around a cryoablation iceball: a phantom study and initial comparison with in vivo findings.
    Overduin CG; Bomers JG; Jenniskens SF; Hoes MF; Ten Haken B; de Lange F; Fütterer JJ; Scheenen TW
    Med Phys; 2014 Nov; 41(11):112301. PubMed ID: 25370657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of B
    Curcuru AN; Lewis BC; Kim T; Yang D; Michael Gach H
    Med Phys; 2021 Jun; 48(6):2929-2938. PubMed ID: 33720421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved half RF slice selectivity in the presence of eddy currents with out-of-slice saturation.
    Josan S; Kaye E; Pauly JM; Daniel BL; Pauly KB
    Magn Reson Med; 2009 May; 61(5):1090-5. PubMed ID: 19319972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: I. Analysis and compensation of eddy currents.
    De Deene Y; De Wagter C; De Neve W; Achten E
    Phys Med Biol; 2000 Jul; 45(7):1807-23. PubMed ID: 10943920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual optimization method of radiofrequency and quasistatic field simulations for reduction of eddy currents generated on 7T radiofrequency coil shielding.
    Zhao Y; Zhao T; Raval SB; Krishnamurthy N; Zheng H; Harris CT; Handler WB; Chronik BA; Ibrahim TS
    Magn Reson Med; 2015 Nov; 74(5):1461-9. PubMed ID: 25367703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Sensitive Frozen-Tissue Imaging for Cryoablation Monitoring Using STIR-UTE MRI.
    Tokuda J; Wang Q; Tuncali K; Seethamraju RT; Tempany CM; Schmidt EJ
    Invest Radiol; 2020 May; 55(5):310-317. PubMed ID: 31977600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature quantitation and mapping of frozen tissue.
    Butts K; Sinclair J; Daniel BL; Wansapura J; Pauly JM
    J Magn Reson Imaging; 2001 Jan; 13(1):99-104. PubMed ID: 11169810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo MR thermometry of frozen tissue using R2* and signal intensity.
    Wansapura JP; Daniel BL; Vigen KK; Butts K
    Acad Radiol; 2005 Sep; 12(9):1080-4. PubMed ID: 16112510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and correction of system delays and eddy currents for MR imaging with ultrashort echo-time and time-varying gradients.
    Atkinson IC; Lu A; Thulborn KR
    Magn Reson Med; 2009 Aug; 62(2):532-7. PubMed ID: 19353662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and correction of center-frequency effects in X-nuclear eddy current compensations on a clinical MR system.
    McLean MA; Hinks RS; Kaggie JD; Woitek R; Riemer F; Graves MJ; McIntyre DJO; Gallagher FA; Schulte RF
    Magn Reson Med; 2021 May; 85(5):2370-2376. PubMed ID: 33274790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 Tesla.
    Krafft AJ; Loeffler RB; Song R; Tipirneni-Sajja A; McCarville MB; Robson MD; Hankins JS; Hillenbrand CM
    Magn Reson Med; 2017 Nov; 78(5):1839-1851. PubMed ID: 28090666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) for simultaneous quantification of long and ultrashort T
    Li Q; Cao X; Ye H; Liao C; He H; Zhong J
    Magn Reson Med; 2019 Oct; 82(4):1359-1372. PubMed ID: 31131911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrashort echo time imaging for quantification of hepatic iron overload: Comparison of acquisition and fitting methods via simulations, phantoms, and in vivo data.
    Tipirneni-Sajja A; Loeffler RB; Krafft AJ; Sajewski AN; Ogg RJ; Hankins JS; Hillenbrand CM
    J Magn Reson Imaging; 2019 May; 49(5):1475-1488. PubMed ID: 30358001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring.
    Aitken AP; Giese D; Tsoumpas C; Schleyer P; Kozerke S; Prieto C; Schaeffter T
    Med Phys; 2014 Jan; 41(1):012302. PubMed ID: 24387523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.