These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18581374)

  • 1. Dynamics of a biological fixed film for phenol degradation in a fluidized-bed bioreactor.
    Worden RM; Donaldson TL
    Biotechnol Bioeng; 1987 Aug; 30(3):398-412. PubMed ID: 18581374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological phenol degradation in a gas-liquid-solid fluidized bed reactor.
    Wisecarver KD; Fan LS
    Biotechnol Bioeng; 1989 Mar; 33(8):1029-38. PubMed ID: 18588017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of 3,4-dichloroaniline in a fluidized bed bioreactor and a steady-state biofilm Kinetic model.
    Livingston AG
    Biotechnol Bioeng; 1991 Jul; 38(3):260-72. PubMed ID: 18600760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilised cells of Nocardia hydrocarbonoxydans.
    Shetty KV; Verma DK; Srinikethan G
    Bioprocess Biosyst Eng; 2011 Jan; 34(1):45-56. PubMed ID: 20563604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study of degradation of phenol in a fluidized bed bioreactor with a cyclodextrin polymer as biofilm carrier.
    Sevillano X; Isasi JR; PeƱas FJ
    Biodegradation; 2008 Jul; 19(4):589-97. PubMed ID: 18034360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative performance of biofilm reactor types.
    Rittmann BE
    Biotechnol Bioeng; 1982 Jun; 24(6):1341-70. PubMed ID: 18546429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of phenol through a biofilm grown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor.
    Fan LS; Leyva-Ramos R; Wisecarver KD; Zehner BJ
    Biotechnol Bioeng; 1990 Feb; 35(3):279-86. PubMed ID: 18592520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of a continuous, aerobic, fixed-film bioreactor. I. Steady-state behavior.
    Park Y; Davis ME; Wallis DA
    Biotechnol Bioeng; 1984 May; 26(5):457-67. PubMed ID: 18553340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling phenol biodegradation by activated sludges evaluated through respirometric techniques.
    Contreras EM; Albertario ME; Bertola NC; Zaritzky NE
    J Hazard Mater; 2008 Oct; 158(2-3):366-74. PubMed ID: 18328621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel membrane bioreactor for detoxifying industrial wastewater: I. Biodegradation of phenol in a synthetically concocted wastewater.
    Livingston AG
    Biotechnol Bioeng; 1993 Apr; 41(10):915-26. PubMed ID: 18601273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological phenol removal using immobilized cells in a pulsed plate bioreactor: effect of dilution rate and influent phenol concentration.
    Vidya Shetty K; Ramanjaneyulu R; Srinikethan G
    J Hazard Mater; 2007 Oct; 149(2):452-9. PubMed ID: 17532562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of draft tube gas-liquid-solid fluidized-bed bioreactor with immobilized living cells for phenol degradation.
    Fan LS; Fujie K; Long TR; Tang WT
    Biotechnol Bioeng; 1987 Sep; 30(4):498-504. PubMed ID: 18581427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of local dynamic behavior of phenol degradation in an internal loop airlift bioreactor by yeast Candida tropicalis.
    Feng W; Wen J; Liu C; Yuan Q; Jia X; Sun Y
    Biotechnol Bioeng; 2007 Jun; 97(2):251-64. PubMed ID: 17013942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of a continuous, aerobic, fixed-film bioreactor. II. Dynamic behavior.
    Park Y; Davis ME; Wallis DA
    Biotechnol Bioeng; 1984 May; 26(5):468-76. PubMed ID: 18553341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures.
    Yang RD; Humphrey AE
    Biotechnol Bioeng; 1975 Aug; 17(8):1211-35. PubMed ID: 1236402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical effectiveness calculations concerning the degradation of an inhibitive substrate by a steady-state biofilm.
    van Ede CJ; Bollen AM; Beenackers AA
    Biotechnol Bioeng; 1993 Jul; 42(3):267-78. PubMed ID: 18613009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm detachment mechanisms in a liquid-fluidized bed.
    Chang HT; Rittmann BE; Amar D; Heim R; Ehlinger O; Lesty Y
    Biotechnol Bioeng; 1991 Aug; 38(5):499-506. PubMed ID: 18604808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Packed bed dynamics during microbial treatment of wastewater: modelling and simulation.
    Agarwal GK; Ghoshal AK
    Bioresour Technol; 2008 Jun; 99(9):3765-73. PubMed ID: 17714943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration multiplicity in a draft tube fluidized-bed bioreactor involving two limiting substrates.
    Tong CC; Fan LS
    Biotechnol Bioeng; 1988 Jan; 31(1):24-34. PubMed ID: 18581559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effect of plate pulsation parameters and phenol concentrations on the phenol removal efficiency of a pulsed plate bioreactor with immobilized cells.
    Shetty KV; Kedargol MR; Srinikethan G
    Water Sci Technol; 2008; 58(6):1253-9. PubMed ID: 18845864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.