BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18581491)

  • 1. Modeling the kinetics of immobilized glucose oxidase.
    Parker JW; Schwartz CS
    Biotechnol Bioeng; 1987 Oct; 30(6):724-35. PubMed ID: 18581491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of two experimental methods for the determination of Michaelis-Menten kinetics of an immobilized enzyme.
    Hooijmans CM; Stoop ML; Boon M; Luyben KC
    Biotechnol Bioeng; 1992 Jun; 40(1):16-24. PubMed ID: 18601039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pH switch affects the steady-state kinetic mechanism of pyranose 2-oxidase from Trametes ochracea.
    Rungsrisuriyachai K; Gadda G
    Arch Biochem Biophys; 2009 Mar; 483(1):10-5. PubMed ID: 19146821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous spectrophotometric assay for ascorbate oxidase based on a novel chromophoric substrate, 2-aminoascorbic acid.
    Wimalasena K; Dharmasena S
    Anal Biochem; 1993 Apr; 210(1):58-62. PubMed ID: 8489025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore diffusion model for a two-substrate enzymatic reaction: application to galactose oxidase immobilized on porous glass particles.
    Dahodwala SK; Humphrey AE
    Biotechnol Bioeng; 1976 Jul; 18(7):987-1000. PubMed ID: 953165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of kinetic profile of free and immobilized glucose oxidase, immobilized on low-density polyethylene using UV polymerization.
    Kothapalli A; Hayes K; Sadler G; Morgan M
    J Food Sci; 2007 Nov; 72(9):C478-82. PubMed ID: 18034707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the intrinsic kinetic constants of immobilized glucose oxidase and catalase.
    Tse PH; Leypoldt JK; Gough DA
    Biotechnol Bioeng; 1987 Apr; 29(6):696-704. PubMed ID: 18576504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General theory of determining intraparticle active immobilized enzyme distribution and rate parameters.
    Hossain MM; Do DD
    Biotechnol Bioeng; 1989 Mar; 33(8):963-75. PubMed ID: 18588010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant.
    Hoh CY; Cord-Ruwisch R
    Biotechnol Bioeng; 1996 Sep; 51(5):597-604. PubMed ID: 18629824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactose oxidase: applications of the covalently immobilized enzyme in a packed bed configuration.
    Dahodwala SK; Weibel MK; Humphrey AE
    Biotechnol Bioeng; 1976 Dec; 18(12):1679-94. PubMed ID: 1036460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An enzyme rate equation for the overall rate of reaction of gel-immobilized glucose oxidase particles under buffered conditions. I. Pseudo-one substrate conditions.
    Atkinson B; Lester DE
    Biotechnol Bioeng; 1974 Oct; 16(10):1299-320. PubMed ID: 4429791
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies of Chromobacterium viscosum lipase in AOT water in oil microemulsions and gelatin microemulsion-based organogels.
    Jenta TR; Batts G; Rees GD; Robinson BH
    Biotechnol Bioeng; 1997 Jun; 54(5):416-27. PubMed ID: 18634134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of immobilized sucrose phosphorylase.
    Taylor F; Chen L; Gong CS; Tsao GT
    Biotechnol Bioeng; 1982 Feb; 24(2):317-28. PubMed ID: 18546305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic model of 1,3-specific triacylglycerols alcoholysis catalyzed by lipases.
    Pilarek M; Szewczyk KW
    J Biotechnol; 2007 Jan; 127(4):736-44. PubMed ID: 17007954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enzyme rate equation for the overall rate of reaction of gel-immobilized glucose oxidase particles under buffered conditions. II. Two limiting substrates.
    Atkinson B; Lester DE
    Biotechnol Bioeng; 1974 Oct; 16(10):1321-43. PubMed ID: 4429792
    [No Abstract]   [Full Text] [Related]  

  • 19. Parametric analysis of the errors associated with the Michaelis-Menten equation.
    Brown RF; Holtzapple MT
    Biotechnol Bioeng; 1990 Dec; 36(11):1141-50. PubMed ID: 18595055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose oxidase--an overview.
    Bankar SB; Bule MV; Singhal RS; Ananthanarayan L
    Biotechnol Adv; 2009; 27(4):489-501. PubMed ID: 19374943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.