BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18582044)

  • 1. Highly stable organic modification of Si(111) surfaces: towards reacting Si with further functionalities while preserving the desirable chemical properties of full Si-C atop site terminations.
    Puniredd SR; Assad O; Haick H
    J Am Chem Soc; 2008 Jul; 130(29):9184-5. PubMed ID: 18582044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stable organic monolayers for reacting silicon with further functionalities: the effect of the C-C bond nearest the silicon surface.
    Puniredd SR; Assad O; Haick H
    J Am Chem Soc; 2008 Oct; 130(41):13727-34. PubMed ID: 18803387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable scaffolds for reacting Si nanowires with further organic functionalities while preserving Si-C passivation of surface sites.
    Assad O; Puniredd SR; Stelzner T; Christiansen S; Haick H
    J Am Chem Soc; 2008 Dec; 130(52):17670-1. PubMed ID: 19108698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent attachment of organic monolayers to silicon carbide surfaces.
    Rosso M; Arafat A; Schroën K; Giesbers M; Roper CS; Maboudian R; Zuilhof H
    Langmuir; 2008 Apr; 24(8):4007-12. PubMed ID: 18324867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of C-Si covalent bond in CH3 adsorbate formed by chemical reaction of CH3MgBr and H:Si(111).
    Yamada T; Inoue T; Yamada K; Takano N; Osaka T; Harada H; Nishiyama K; Taniguchi I
    J Am Chem Soc; 2003 Jul; 125(26):8039-42. PubMed ID: 12823027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization of organic multilayers on silicon(111) formed by immobilization of molecular films on functionalized Si-C linked monolayers.
    Böcking T; James M; Coster HG; Chilcott TC; Barrow KD
    Langmuir; 2004 Oct; 20(21):9227-35. PubMed ID: 15461511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent attachment of acetylene and methylacetylene functionality to Si(111) surfaces: scaffolds for organic surface functionalization while retaining Si-C passivation of Si(111) surface sites.
    Hurley PT; Nemanick EJ; Brunschwig BS; Lewis NS
    J Am Chem Soc; 2006 Aug; 128(31):9990-1. PubMed ID: 16881609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water exclusion at the nanometer scale provides long-term passivation of silicon (111) grafted with alkyl monolayers.
    Gorostiza P; Henry de Villeneuve C; Sun QY; Sanz F; Wallart X; Boukherroub R; Allongue P
    J Phys Chem B; 2006 Mar; 110(11):5576-85. PubMed ID: 16539500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver-catalyzed C(sp)-H and C(sp)-Si bond transformations and related processes.
    Yamamoto Y
    Chem Rev; 2008 Aug; 108(8):3199-222. PubMed ID: 18611053
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular modeling of alkyl monolayers on the Si(100)-2 x 1 surface.
    Lee MV; Guo D; Linford MR; Zuilhof H
    Langmuir; 2004 Oct; 20(21):9108-13. PubMed ID: 15461494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium-catalyzed intermolecular coupling of 2-silylaryl bromides with alkynes: synthesis of benzosiloles and heteroarene-fused siloles by catalytic cleavage of the C(sp3)-Si bond.
    Liang Y; Geng W; Wei J; Xi Z
    Angew Chem Int Ed Engl; 2012 Feb; 51(8):1934-7. PubMed ID: 22252916
    [No Abstract]   [Full Text] [Related]  

  • 12. Nonradical mechanisms for the uncatalyzed thermal functionalization of silicon surfaces by alkenes and alkynes: a density functional study.
    Coletti C; Marrone A; Giorgi G; Sgamellotti A; Cerofolini G; Re N
    Langmuir; 2006 Nov; 22(24):9949-56. PubMed ID: 17106984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleophilic substitution at silicon (SN2@Si) via a central reaction barrier.
    Bento AP; Bickelhaupt FM
    J Org Chem; 2007 Mar; 72(6):2201-7. PubMed ID: 17300206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface structures, photovoltages, and stability of n-Si(111) electrodes surface modified with metal nanodots and various organic groups.
    Takabayashi S; Ohashi M; Mashima K; Liu Y; Yamazaki S; Nakato Y
    Langmuir; 2005 Sep; 21(19):8832-8. PubMed ID: 16142967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic stamp lithography for sub-100 nm patterning of organic monolayers.
    Mizuno H; Buriak JM
    J Am Chem Soc; 2008 Dec; 130(52):17656-7. PubMed ID: 19063631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: surface preparation, passivation and functionalization.
    Ciampi S; Harper JB; Gooding JJ
    Chem Soc Rev; 2010 Jun; 39(6):2158-83. PubMed ID: 20393648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and electrical passivation of single-crystal silicon(100) surfaces through a two-step chlorination/alkylation process.
    Nemanick EJ; Hurley PT; Webb LJ; Knapp DW; Michalak DJ; Brunschwig BS; Lewis NS
    J Phys Chem B; 2006 Aug; 110(30):14770-8. PubMed ID: 16869585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heck coupling of olefins to mixed methyl/thienyl monolayers on Si(111) surfaces.
    O'Leary LE; Rose MJ; Ding TX; Johansson E; Brunschwig BS; Lewis NS
    J Am Chem Soc; 2013 Jul; 135(27):10081-90. PubMed ID: 23802505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and structure of the unique silicon(iv) cation [SiF3(Me3tacn)]+.
    Cheng F; Hector AL; Levason W; Reid G; Webster M; Zhang W
    Chem Commun (Camb); 2009 Mar; (11):1334-6. PubMed ID: 19259578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexadecadienyl monolayers on hydrogen-terminated Si(111): faster monolayer formation and improved surface coverage using the enyne moiety.
    Rijksen B; Pujari SP; Scheres L; van Rijn CJ; Baio JE; Weidner T; Zuilhof H
    Langmuir; 2012 Apr; 28(16):6577-88. PubMed ID: 22448743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.