BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

855 related articles for article (PubMed ID: 18582149)

  • 1. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections.
    Wiklund K; Olivera GH; Brahme A; Lind BK
    Radiat Res; 2008 Jul; 170(1):83-92. PubMed ID: 18582149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytical model for light ion pencil beam dose distributions: multiple scattering of primary and secondary ions.
    Hollmark M; Gudowska I; Belkić Dz; Brahme A; Sobolevsky N
    Phys Med Biol; 2008 Jul; 53(13):3477-91. PubMed ID: 18547916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Electron fields in clinical application. A comparison of pencil beam and Monte Carlo algorithm].
    Treutwein M; Bogner L
    Strahlenther Onkol; 2007 Aug; 183(8):454-8. PubMed ID: 17680226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of electron beam dose calculation accuracy between treatment planning systems using either a pencil beam or a Monte Carlo algorithm.
    Ding GX; Cygler JE; Yu CW; Kalach NI; Daskalov G
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):622-33. PubMed ID: 16168854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monte Carlo evaluation of carbon and lithium ions dose distributions in water.
    Taleei R; Hultqvist M; Gudowska I; Nikjoo H
    Int J Radiat Biol; 2012 Jan; 88(1-2):189-94. PubMed ID: 21929295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PET monitoring of cancer therapy with 3He and 12C beams: a study with the GEANT4 toolkit.
    Pshenichnov I; Larionov A; Mishustin I; Greiner W
    Phys Med Biol; 2007 Dec; 52(24):7295-312. PubMed ID: 18065840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of electron beam obliquity on lateral buildup ratio: a Monte Carlo dosimetry evaluation.
    Chow JC; Grigorov GN
    Phys Med Biol; 2007 Jul; 52(13):3965-77. PubMed ID: 17664588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Very high-energy electron dose calculation using the Fermi-Eyges theory of multiple scattering and a simplified pencil beam model.
    Ronga MG; Deut U; Bonfrate A; De Marzi L
    Med Phys; 2023 Dec; 50(12):8009-8022. PubMed ID: 37730956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of source parameters on large-field electron beam profiles calculated using Monte Carlo methods.
    Weinberg R; Antolak JA; Starkschall G; Kudchadker RJ; White RA; Hogstrom KR
    Phys Med Biol; 2009 Jan; 54(1):105-16. PubMed ID: 19075360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.
    Maigne L; Perrot Y; Schaart DR; Donnarieix D; Breton V
    Phys Med Biol; 2011 Feb; 56(3):811-27. PubMed ID: 21239846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microdosimetry measurements characterizing the radiation fields of 300 MeV/u 12C and 185 MeV/u 7Li pencil beams stopping in water.
    Martino G; Durante M; Schardt D
    Phys Med Biol; 2010 Jun; 55(12):3441-9. PubMed ID: 20508316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo track structure for radiation biology and space applications.
    Nikjoo H; Uehara S; Khvostunov IG; Cucinotta FA; Wilson WE; Goodhead DT
    Phys Med; 2001; 17 Suppl 1():38-44. PubMed ID: 11770535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A
    Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of calculations for electrons modulated with conventional photon multileaf collimators.
    Klein EE; Vicic M; Ma CM; Low DA; Drzymala RE
    Phys Med Biol; 2008 Mar; 53(5):1183-208. PubMed ID: 18296757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron beam dose planning using Gaussian beams. Improved radial dose profiles.
    Lax I; Brahme A; Andreo P
    Acta Radiol Suppl; 1983; 364():49-59. PubMed ID: 6316740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison and assessment of electron cross sections for Monte Carlo track structure codes.
    Uehara S; Nikjoo H; Goodhead DT
    Radiat Res; 1999 Aug; 152(2):202-13. PubMed ID: 10409331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of electron-beam surface dose with an electron multi-leaf collimator (eMLC): a feasibility study.
    Vatanen T; Traneus E; Lahtinen T
    Phys Med Biol; 2009 Apr; 54(8):2407-19. PubMed ID: 19336845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Auger effect in physical and biological research.
    Nikjoo H; Emfietzoglou D; Charlton DE
    Int J Radiat Biol; 2008 Dec; 84(12):1011-26. PubMed ID: 19061125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.