These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 18582334)
1. Probiotic bacteria affect the composition of salivary pellicle and streptococcal adhesion in vitro. Haukioja A; Loimaranta V; Tenovuo J Oral Microbiol Immunol; 2008 Aug; 23(4):336-43. PubMed ID: 18582334 [TBL] [Abstract][Full Text] [Related]
2. Lysozyme and lactoperoxidase inhibit the adherence of Streptococcus mutans NCTC 10449 (serotype c) to saliva-treated hydroxyapatite in vitro. Roger V; Tenovuo J; Lenander-Lumikari M; Söderling E; Vilja P Caries Res; 1994; 28(6):421-8. PubMed ID: 7850845 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of a salivary-pellicle-binding peptide by phage display. Cukkemane N; Bikker FJ; Nazmi K; Brand HS; Veerman EC Arch Oral Biol; 2014 May; 59(5):448-54. PubMed ID: 24607635 [TBL] [Abstract][Full Text] [Related]
4. A comparative study of the effect of probiotics on cariogenic biofilm model for preventing dental caries. Lee SH; Kim YJ Arch Microbiol; 2014 Aug; 196(8):601-9. PubMed ID: 24919536 [TBL] [Abstract][Full Text] [Related]
5. Roles of salivary proteins in the adherence of oral streptococci to various orthodontic brackets. Ahn SJ; Kho HS; Lee SW; Nahm DS J Dent Res; 2002 Jun; 81(6):411-5. PubMed ID: 12097434 [TBL] [Abstract][Full Text] [Related]
6. Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Haukioja A; Yli-Knuuttila H; Loimaranta V; Kari K; Ouwehand AC; Meurman JH; Tenovuo J Oral Microbiol Immunol; 2006 Oct; 21(5):326-32. PubMed ID: 16922933 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci. Schüpbach P; Neeser JR; Golliard M; Rouvet M; Guggenheim B J Dent Res; 1996 Oct; 75(10):1779-88. PubMed ID: 8955673 [TBL] [Abstract][Full Text] [Related]
9. Saliva mediated adherence, aggregation and prevalence in dental plaque of Streptococcus mutans, Streptococcus sanguis and Actinomyces spp, in young and elderly humans. Carlén A; Olsson J; Ramberg P Arch Oral Biol; 1996 Dec; 41(12):1133-40. PubMed ID: 9134102 [TBL] [Abstract][Full Text] [Related]
10. Casein phosphopeptide combined with fluoride enhances the inhibitory effect on initial adhesion of Streptococcus mutans to the saliva-coated hydroxyapatite disc. Wang X; Liu L; Zhou X; Huo Y; Gao J; Gu H BMC Oral Health; 2020 Jun; 20(1):169. PubMed ID: 32532263 [TBL] [Abstract][Full Text] [Related]
11. [Effect of neuraminidase on the adherence of S. mutans to salivary pellicle]. Fan MW Zhonghua Kou Qiang Yi Xue Za Zhi; 1993 Jul; 28(4):209-11, 254. PubMed ID: 8174403 [TBL] [Abstract][Full Text] [Related]
12. Human common salivary protein 1 (CSP-1) promotes binding of Streptococcus mutans to experimental salivary pellicle and glucans formed on hydroxyapatite surface. Ambatipudi KS; Hagen FK; Delahunty CM; Han X; Shafi R; Hryhorenko J; Gregoire S; Marquis RE; Melvin JE; Koo H; Yates JR J Proteome Res; 2010 Dec; 9(12):6605-14. PubMed ID: 20858015 [TBL] [Abstract][Full Text] [Related]
13. Cumulative correlations of lysozyme, lactoferrin, peroxidase, S-IgA, amylase, and total protein concentrations with adherence of oral viridans streptococci to microplates coated with human saliva. Rudney JD; Hickey KL; Ji Z J Dent Res; 1999 Mar; 78(3):759-68. PubMed ID: 10096451 [TBL] [Abstract][Full Text] [Related]
14. Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci. Edgerton M; Lo SE; Scannapieco FA Int J Oral Maxillofac Implants; 1996; 11(4):443-9. PubMed ID: 8803339 [TBL] [Abstract][Full Text] [Related]
15. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Schilling KM; Bowen WH Infect Immun; 1992 Jan; 60(1):284-95. PubMed ID: 1530843 [TBL] [Abstract][Full Text] [Related]
16. In vitro evaluation of yoghurt starter lactobacilli and Lactobacillus rhamnosus GG adhesion to saliva-coated surfaces. Stamatova I; Kari K; Vladimirov S; Meurman JH Oral Microbiol Immunol; 2009 Jun; 24(3):218-23. PubMed ID: 19416451 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of salivary and serum proteins, and bacterial adherence on titanium and zirconia ceramic surfaces. Lima EM; Koo H; Vacca Smith AM; Rosalen PL; Del Bel Cury AA Clin Oral Implants Res; 2008 Aug; 19(8):780-5. PubMed ID: 18705809 [TBL] [Abstract][Full Text] [Related]
18. Coaggregation between probiotic bacteria and caries-associated strains: an in vitro study. Twetman L; Larsen U; Fiehn NE; Stecksén-Blicks C; Twetman S Acta Odontol Scand; 2009; 67(5):284-8. PubMed ID: 19479452 [TBL] [Abstract][Full Text] [Related]
19. Saliva-promoted adhesion of Streptococcus mutans MT8148 associates with dental plaque and caries experience. Shimotoyodome A; Kobayashi H; Tokimitsu I; Hase T; Inoue T; Matsukubo T; Takaesu Y Caries Res; 2007; 41(3):212-8. PubMed ID: 17426402 [TBL] [Abstract][Full Text] [Related]
20. Interactions between Lactobacillus rhamnosus GG and oral micro-organisms in an in vitro biofilm model. Jiang Q; Stamatova I; Kainulainen V; Korpela R; Meurman JH BMC Microbiol; 2016 Jul; 16(1):149. PubMed ID: 27405227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]