BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

592 related articles for article (PubMed ID: 18582858)

  • 1. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos.
    Bradham CA; McClay DR
    Development; 2006 Jan; 133(1):21-32. PubMed ID: 16319119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo.
    Range R; Lepage T
    Dev Biol; 2011 Sep; 357(2):440-9. PubMed ID: 21782809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.
    Coffman JA; McCarthy JJ; Dickey-Sims C; Robertson AJ
    Dev Biol; 2004 Sep; 273(1):160-71. PubMed ID: 15302605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1.
    Range R; Lapraz F; Quirin M; Marro S; Besnardeau L; Lepage T
    Development; 2007 Oct; 134(20):3649-64. PubMed ID: 17855430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Burke RD
    Dev Biol; 2007 Feb; 302(2):494-503. PubMed ID: 17101124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment.
    Agca C; Klein WH; Venuti JM
    Mech Dev; 2009; 126(5-6):430-42. PubMed ID: 19368800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo.
    Cavalieri V; Di Bernardo M; Anello L; Spinelli G
    Dev Biol; 2008 Sep; 321(2):455-69. PubMed ID: 18585371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side.
    Duboc V; Röttinger E; Lapraz F; Besnardeau L; Lepage T
    Dev Cell; 2005 Jul; 9(1):147-58. PubMed ID: 15992548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RTK and TGF-beta signaling pathways genes in the sea urchin genome.
    Lapraz F; Röttinger E; Duboc V; Range R; Duloquin L; Walton K; Wu SY; Bradham C; Loza MA; Hibino T; Wilson K; Poustka A; McClay D; Angerer L; Gache C; Lepage T
    Dev Biol; 2006 Dec; 300(1):132-52. PubMed ID: 17084834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry.
    Coffman JA; Davidson EH
    Dev Biol; 2001 Feb; 230(1):18-28. PubMed ID: 11161559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
    Yaguchi S; Yaguchi J; Burke RD
    Development; 2006 Jun; 133(12):2337-46. PubMed ID: 16687447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
    Nam J; Su YH; Lee PY; Robertson AJ; Coffman JA; Davidson EH
    Dev Biol; 2007 Jun; 306(2):860-9. PubMed ID: 17451671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation.
    Agca C; Klein WH; Venuti JM
    Dev Dyn; 2009 Jul; 238(7):1777-87. PubMed ID: 19517573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling.
    Li X; Wikramanayake AH; Klein WH
    Dev Biol; 1999 Aug; 212(2):425-39. PubMed ID: 10433832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.