BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18583101)

  • 1. Prediction of antibiotic resistance proteins from sequence-derived properties irrespective of sequence similarity.
    Zhang HL; Lin HH; Tao L; Ma XH; Dai JL; Jia J; Cao ZW
    Int J Antimicrob Agents; 2008 Sep; 32(3):221-6. PubMed ID: 18583101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer prediction of allergen proteins from sequence-derived protein structural and physicochemical properties.
    Cui J; Han LY; Li H; Ung CY; Tang ZQ; Zheng CJ; Cao ZW; Chen YZ
    Mol Immunol; 2007 Jan; 44(4):514-20. PubMed ID: 16563508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the functional class of metal-binding proteins from sequence derived physicochemical properties by support vector machine approach.
    Lin HH; Han LY; Zhang HL; Zheng CJ; Xie B; Cao ZW; Chen YZ
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S13. PubMed ID: 17254297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predict potential drug targets from the ion channel proteins based on SVM.
    Huang C; Zhang R; Chen Z; Jiang Y; Shang Z; Sun P; Zhang X; Li X
    J Theor Biol; 2010 Feb; 262(4):750-6. PubMed ID: 19903486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of potential drug targets based on simple sequence properties.
    Li Q; Lai L
    BMC Bioinformatics; 2007 Sep; 8():353. PubMed ID: 17883836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for predicting bacterial protein subcellular localization.
    Gardy JL; Brinkman FS
    Nat Rev Microbiol; 2006 Oct; 4(10):741-51. PubMed ID: 16964270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features.
    Pugalenthi G; Kumar KK; Suganthan PN; Gangal R
    Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance against antimicrobial peptides is independent of Escherichia coli AcrAB, Pseudomonas aeruginosa MexAB and Staphylococcus aureus NorA efflux pumps.
    Rieg S; Huth A; Kalbacher H; Kern WV
    Int J Antimicrob Agents; 2009 Feb; 33(2):174-6. PubMed ID: 18945595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of antibiotic activity and synthesis of new pentadecapeptides based on lactoferricins.
    Lejon T; Stiberg T; Strøm MB; Svendsen JS
    J Pept Sci; 2004 Jun; 10(6):329-35. PubMed ID: 15214437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the protein structural class by specific peptide frequencies.
    Costantini S; Facchiano AM
    Biochimie; 2009 Feb; 91(2):226-9. PubMed ID: 18957316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network.
    Tang YR; Chen YZ; Canchaya CA; Zhang Z
    Protein Eng Des Sel; 2007 Aug; 20(8):405-12. PubMed ID: 17652129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the protein SUMO modification sites based on Properties Sequential Forward Selection (PSFS).
    Liu B; Li S; Wang Y; Lu L; Li Y; Cai Y
    Biochem Biophys Res Commun; 2007 Jun; 358(1):136-9. PubMed ID: 17470363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DPROT: prediction of disordered proteins using evolutionary information.
    Sethi D; Garg A; Raghava GP
    Amino Acids; 2008 Oct; 35(3):599-605. PubMed ID: 18425404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for discovering transmembrane beta-barrel proteins in Gram-negative bacterial proteomes.
    Hu J; Yan C
    Comput Biol Chem; 2008 Aug; 32(4):298-301. PubMed ID: 18467177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Protein structural class prediction with binary tree-based support vector machines].
    Zhang T; Ding Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):921-4. PubMed ID: 18788309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approach.
    Han LY; Cai CZ; Ji ZL; Cao ZW; Cui J; Chen YZ
    Nucleic Acids Res; 2004; 32(21):6437-44. PubMed ID: 15585667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector-G: multi-modular SVM-based heterotrimeric G protein prediction.
    Jain P; Wadhwa P; Aygun R; Podila G
    In Silico Biol; 2008; 8(2):141-55. PubMed ID: 18928202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the idiosyncratic bacterial protein tyrosine kinase (BY-kinase) family signature.
    Jadeau F; Bechet E; Cozzone AJ; Deléage G; Grangeasse C; Combet C
    Bioinformatics; 2008 Nov; 24(21):2427-30. PubMed ID: 18772155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine.
    Zhou XB; Chen C; Li ZC; Zou XY
    Amino Acids; 2008 Aug; 35(2):383-8. PubMed ID: 18157588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.