These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18583170)

  • 21. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments.
    Vanhille C; Campos-Pozuelo C
    Ultrason Sonochem; 2009 Jun; 16(5):669-85. PubMed ID: 19171496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualisation and electrochemical determination of the actives zones in an ultrasonic reactor using 20 and 500 kHz frequencies.
    Viennet R; Ligier V; Hihn JY; Bereziat D; Nika P; Doche ML
    Ultrason Sonochem; 2004 May; 11(3-4):125-9. PubMed ID: 15081968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A predictive model obtained by identification for the ultrasonic "equivalent" flow velocity at surface vicinity.
    Mandroyan A; Hihn JY; Doche ML; Pothier JM
    Ultrason Sonochem; 2010 Aug; 17(6):965-77. PubMed ID: 20071207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.
    Hallez L; Touyeras F; Hihn JY; Bailly Y
    Ultrason Sonochem; 2016 Mar; 29():420-7. PubMed ID: 26585023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pressure-induced reduction of shielding for improving sonochemical activity.
    van Iersel MM; van den Manacker JP; Benes NE; Keurentjes JT
    J Phys Chem B; 2007 Mar; 111(12):3081-4. PubMed ID: 17388446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visualization and optimization of cavitation activity at a solid surface in high frequency ultrasound fields.
    Kauer M; Belova-Magri V; Cairós C; Schreier HJ; Mettin R
    Ultrason Sonochem; 2017 Jan; 34():474-483. PubMed ID: 27773271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Power ultrasound interaction with DC atmospheric pressure electrical discharge.
    Bálek R; Pekárek S; Bartáková Z
    Ultrasonics; 2006 Dec; 44 Suppl 1():e549-53. PubMed ID: 16793088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of object resonances by vibro-acoustography and their associated modes.
    Mitri FG; Fellah ZE; Closset E; Trompette P; Chapelon JY
    Ultrasonics; 2004 Apr; 42(1-9):537-43. PubMed ID: 15047343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of acoustic and geometric effects on the sonoreactor performance.
    Rashwan SS; Dincer I; Mohany A
    Ultrason Sonochem; 2020 Nov; 68():105174. PubMed ID: 32505100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An improved sonochemical reactor.
    Cravotto G; Omiccioli G; Stevanato L
    Ultrason Sonochem; 2005 Feb; 12(3):213-7. PubMed ID: 15491884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of an 1 MHz ultrasonic cavitation bubble field in a chopped irradiation mode.
    Labouret S; Frohly J; Rivart F
    Ultrason Sonochem; 2006 May; 13(4):287-94. PubMed ID: 15996505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.
    Liu HL; Hsieh CM
    Ultrason Sonochem; 2009 Mar; 16(3):431-8. PubMed ID: 18951828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative study of sonochemical reactors with different geometry using thermal and chemical probes.
    Nikitenko SI; Le Naour C; Moisy P
    Ultrason Sonochem; 2007 Mar; 14(3):330-6. PubMed ID: 16996294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical simulation of liquid velocity distribution in a sonochemical reactor.
    Xu Z; Yasuda K; Koda S
    Ultrason Sonochem; 2013 Jan; 20(1):452-9. PubMed ID: 22634380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A phenomenological investigation into the opposing effects of fluid flow on sonochemical activity at different frequency and power settings. 2. Fluid circulation at high frequencies.
    Bussemaker MJ; Zhang D
    Ultrason Sonochem; 2014 Mar; 21(2):485-92. PubMed ID: 24134828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of liquid-surface vibration on sonochemiluminescence intensity.
    Tuziuti T; Yasui K; Kozuka T; Towata A
    J Phys Chem A; 2010 Jul; 114(27):7321-5. PubMed ID: 20553009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multibubble Sonochemistry and Sonoluminescence at 100 kHz: The Missing Link between Low- and High-Frequency Ultrasound.
    Ji R; Pflieger R; Virot M; Nikitenko SI
    J Phys Chem B; 2018 Jul; 122(27):6989-6994. PubMed ID: 29889527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer.
    Chen H; Li X; Wan M; Wang S
    Ultrason Sonochem; 2007 Mar; 14(3):291-7. PubMed ID: 17071124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of stable and transient cavitation bubbles in a milliflow reactor using a multibubble sonoluminescence quenching technique.
    Gielen B; Jordens J; Janssen J; Pfeiffer H; Wevers M; Thomassen LC; Braeken L; Van Gerven T
    Ultrason Sonochem; 2015 Jul; 25():31-9. PubMed ID: 25218768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.