These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 18583207)

  • 1. Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
    Miranda P; Pajares A; Guiberteau F
    Acta Biomater; 2008 Nov; 4(6):1715-24. PubMed ID: 18583207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting.
    Miranda P; Pajares A; Saiz E; Tomsia AP; Guiberteau F
    J Biomed Mater Res A; 2007 Dec; 83(3):646-55. PubMed ID: 17508415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration.
    Martínez-Vázquez FJ; Perera FH; Miranda P; Pajares A; Guiberteau F
    Acta Biomater; 2010 Nov; 6(11):4361-8. PubMed ID: 20566307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering.
    Sandino C; Planell JA; Lacroix D
    J Biomech; 2008; 41(5):1005-14. PubMed ID: 18255075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering.
    Ramay HR; Zhang M
    Biomaterials; 2004 Sep; 25(21):5171-80. PubMed ID: 15109841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting.
    Miranda P; Pajares A; Saiz E; Tomsia AP; Guiberteau F
    J Biomed Mater Res A; 2008 Apr; 85(1):218-27. PubMed ID: 17688280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads.
    Yao J; Turteltaub SR; Ducheyne P
    Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design variables for mechanical properties of bone tissue scaffolds.
    Howk D; Chu TM
    Biomed Sci Instrum; 2006; 42():278-83. PubMed ID: 16817621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a thin HA coating on the stress/strain distribution in bone around dental implants using three-dimensional finite element analysis.
    Aoki H; Ozeki K; Ohtani Y; Fukui Y; Asaoka T
    Biomed Mater Eng; 2006; 16(3):157-69. PubMed ID: 16518015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element study of scaffold architecture design and culture conditions for tissue engineering.
    Olivares AL; Marsal E; Planell JA; Lacroix D
    Biomaterials; 2009 Oct; 30(30):6142-9. PubMed ID: 19674779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering.
    Deville S; Saiz E; Tomsia AP
    Biomaterials; 2006 Nov; 27(32):5480-9. PubMed ID: 16857254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impregnation of β-tricalcium phosphate robocast scaffolds by in situ polymerization.
    Martínez-Vázquez FJ; Perera FH; van der Meulen I; Heise A; Pajares A; Miranda P
    J Biomed Mater Res A; 2013 Nov; 101(11):3086-96. PubMed ID: 23526780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling material-degradation-induced elastic property of tissue engineering scaffolds.
    Bawolin NK; Li MG; Chen XB; Zhang WJ
    J Biomech Eng; 2010 Nov; 132(11):111001. PubMed ID: 21034142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical behavior of hydroxyapatite as bone substitute material in a loaded implant model. On the surface strain measurement and the maximum compression strength determination of material crash.
    Noro T; Itoh K
    Biomed Mater Eng; 1999; 9(5-6):319-24. PubMed ID: 10822487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering.
    Dellinger JG; Cesarano J; Jamison RD
    J Biomed Mater Res A; 2007 Aug; 82(2):383-94. PubMed ID: 17295231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.
    Uth N; Mueller J; Smucker B; Yousefi AM
    Biofabrication; 2017 Feb; 9(1):015023. PubMed ID: 28222045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-tricalcium phosphate and octacalcium phosphate composite bioceramic material for bone tissue engineering.
    Ding X; Li A; Yang F; Sun K; Sun X
    J Biomater Appl; 2020 Apr; 34(9):1294-1299. PubMed ID: 32028822
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.