These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18583276)

  • 1. Light alters nociceptive effects of magnetic field shielding in mice: intensity and wavelength considerations.
    Prato FS; Desjardins-Holmes D; Keenliside LD; McKay JC; Robertson JA; Thomas AW
    J R Soc Interface; 2009 Jan; 6(30):17-28. PubMed ID: 18583276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light alters nociceptive effects of magnetic field shielding.
    Koziak AM; Desjardins D; Keenliside LD; Thomas AW; Prato FS
    Bioelectromagnetics; 2006 Jan; 27(1):10-5. PubMed ID: 16283641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light.
    Muheim R; Bäckman J; Akesson S
    J Exp Biol; 2002 Dec; 205(Pt 24):3845-56. PubMed ID: 12432008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The detection threshold for extremely low frequency magnetic fields may be below 1000 nT-Hz in mice.
    Prato FS; Desjardins-Holmes D; Keenliside LD; DeMoor JM; Robertson JA; Stodilka RZ; Thomas AW
    Bioelectromagnetics; 2011 Oct; 32(7):561-9. PubMed ID: 21381048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shielding, but not zeroing of the ambient magnetic field reduces stress-induced analgesia in mice.
    Choleris E; Del Seppia C; Thomas AW; Luschi P; Ghione G; Moran GR; Prato FS
    Proc Biol Sci; 2002 Jan; 269(1487):193-201. PubMed ID: 11798436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of zebrafish cryptochrome2 and 4 expression in UV cone photoreceptors.
    Balay SD; Widen SA; Waskiewicz AJ
    Gene Expr Patterns; 2020 Jan; 35():119100. PubMed ID: 32088341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daily repeated magnetic field shielding induces analgesia in CD-1 mice.
    Prato FS; Robertson JA; Desjardins D; Hensel J; Thomas AW
    Bioelectromagnetics; 2005 Feb; 26(2):109-17. PubMed ID: 15672364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological changes in the retina in Pacific ocean salmon Oncorhynchus masou fry in response to neutralization of the geomagnetic field in conditions of normal illumination.
    Maksimovich AA; Kondrashev SL; Gnyubkina VP
    Neurosci Behav Physiol; 2008 Oct; 38(8):821-7. PubMed ID: 18802765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to a hypogeomagnetic field or to oscillating magnetic fields similarly reduce stress-induced analgesia in C57 male mice.
    Del Seppia C; Luschi P; Ghione S; Crosio E; Choleris E; Papi F
    Life Sci; 2000 Feb; 66(14):1299-306. PubMed ID: 10755465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Influence of weak magnetic fields on fish retina photoreceptors].
    Maksimovich AA; Zagal'skaia EO
    Biofizika; 2007; 52(5):916-23. PubMed ID: 17969928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphine-induced analgesia and exposure to low-intensity 60-Hz magnetic fields: inhibition of nocturnal analgesia in mice is a function of magnetic field intensity.
    Ossenkopp KP; Kavaliers M
    Brain Res; 1987 Aug; 418(2):356-60. PubMed ID: 3676716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of static magnetic fields on the physical and chemical properties of cell culture medium RPM1 1640.
    Li F; Song J; Qi H; Sui F; Li G; Wang Q
    Electromagn Biol Med; 2007; 26(1):25-32. PubMed ID: 17454080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely low frequency magnetic field exposure modulates the diurnal rhythm of the pain threshold in mice.
    Choi YM; Jeong JH; Kim JS; Lee BC; Je HD; Sohn UD
    Bioelectromagnetics; 2003 Apr; 24(3):206-10. PubMed ID: 12669304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana.
    Ahmad M; Galland P; Ritz T; Wiltschko R; Wiltschko W
    Planta; 2007 Feb; 225(3):615-24. PubMed ID: 16955271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-dependent magnetoreception in birds: does directional information change with light intensity?
    Wiltschko W; Wiltschko R; Munro U
    Naturwissenschaften; 2000 Jan; 87(1):36-40. PubMed ID: 10663131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic compass orientation in birds and its physiological basis.
    Wiltschko W; Wiltschko R
    Naturwissenschaften; 2002 Oct; 89(10):445-52. PubMed ID: 12384718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila.
    Gegear RJ; Casselman A; Waddell S; Reppert SM
    Nature; 2008 Aug; 454(7207):1014-8. PubMed ID: 18641630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors.
    Baumhardt PE; Moore BA; Doppler M; Fernández-Juricic E
    Brain Behav Evol; 2014; 83(3):181-98. PubMed ID: 24663005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-dependent and -independent behavioral effects of extremely low frequency magnetic fields in a land snail are consistent with a parametric resonance mechanism.
    Prato FS; Kavaliers M; Cullen AP; Thomas AW
    Bioelectromagnetics; 1997; 18(3):284-91. PubMed ID: 9096848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Searching for magnetic compass mechanism in pigeon retinal photoreceptors.
    Rotov AY; Cherbunin RV; Anashina A; Kavokin KV; Chernetsov N; Firsov ML; Astakhova LA
    PLoS One; 2020; 15(3):e0229142. PubMed ID: 32134934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.