These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1858329)

  • 21. Contrast perception across changes in luminance and spatial frequency.
    Peli E; Arend L; Labianca AT
    J Opt Soc Am A Opt Image Sci Vis; 1996 Oct; 13(10):1953-9. PubMed ID: 8828197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The detection of motion in the peripheral visual field.
    McKee SP; Nakayama K
    Vision Res; 1984; 24(1):25-32. PubMed ID: 6695503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial and temporal selectivity of the human motion detection system.
    Anderson SJ; Burr DC
    Vision Res; 1985; 25(8):1147-54. PubMed ID: 4071994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eye movement and visual motion perception in schizophrenia II: Global coherent motion as a function of target velocity and stimulus density.
    Slaghuis WL; Holthouse T; Hawkes A; Bruno R
    Exp Brain Res; 2007 Sep; 182(3):415-26. PubMed ID: 17569035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direction discrimination of cyclopean (stereoscopic) and luminance motion.
    Donnelly M; Bowd C; Patterson R
    Vision Res; 1997 Aug; 37(15):2041-6. PubMed ID: 9327052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The inverse intensity effect is not lost with stimuli in apparent motion.
    Castet E; Lorenceau J; Bonnet C
    Vision Res; 1993 Aug; 33(12):1697-708. PubMed ID: 8236857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation to second-order motion results in a motion aftereffect for directionally-ambiguous test stimuli.
    Ledgeway T
    Vision Res; 1994 Nov; 34(21):2879-89. PubMed ID: 7975322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auditory capture of visual motion: effects on perception and discrimination.
    McCourt ME; Leone LM
    Neuroreport; 2016 Sep; 27(14):1095-100. PubMed ID: 27513197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of adaptation state and stimulus luminance on peri-saccadic localization.
    Georg K; Hamker FH; Lappe M
    J Vis; 2008 Jan; 8(1):15.1-11. PubMed ID: 18318618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The detection of motion in chromatic stimuli: first-order and second-order spatial structure.
    Cropper SJ
    Vision Res; 2005 Mar; 45(7):865-80. PubMed ID: 15644227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flicker adaptation in the peripheral retina.
    Schieting S; Spillmann L
    Vision Res; 1987; 27(2):277-84. PubMed ID: 3576987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colour and luminance interactions in the visual perception of motion.
    Willis A; Anderson SJ
    Proc Biol Sci; 2002 May; 269(1495):1011-6. PubMed ID: 12028757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The time course of the lower threshold of motion during rapid events of adaptation.
    Barraza JF; Colombo EM
    Vision Res; 2001 Apr; 41(9):1139-44. PubMed ID: 11292504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parvocellular and magnocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion.
    Tobimatsu S; Tomoda H; Kato M
    J Neurol Sci; 1995 Dec; 134(1-2):73-82. PubMed ID: 8747847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial summation of first-order and second-order motion in human vision.
    Hutchinson CV; Ledgeway T
    Vision Res; 2010 Aug; 50(17):1766-74. PubMed ID: 20570691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural responses to apparent motion can be predicted by responses to non-moving stimuli.
    Poncet M; Ales JM
    Neuroimage; 2020 Sep; 218():116973. PubMed ID: 32464291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The aperture problem in stereopsis.
    Morgan MJ; Castet E
    Vision Res; 1997 Oct; 37(19):2737-44. PubMed ID: 9373672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contributions of human long-wave and middle-wave cones to motion detection.
    Stromeyer CF; Kronauer RE; Ryu A; Chaparro A; Eskew RT
    J Physiol; 1995 May; 485 ( Pt 1)(Pt 1):221-43. PubMed ID: 7658377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motion detection from photopic to low scotopic luminance levels.
    van de Grind WA; Koenderink JJ; van Doorn AJ
    Vision Res; 2000; 40(2):187-99. PubMed ID: 10793896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Infant motion: detection (M:D) ratios for chromatically defined and luminance-defined moving stimuli.
    Dobkins KR; Teller DY
    Vision Res; 1996 Oct; 36(20):3293-310. PubMed ID: 8944288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.