BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18583602)

  • 21. Impact of Local Electrostatics on the Redox Properties of Tryptophan Radicals in Azurin: Implications for Redox-Active Tryptophans in Proton-Coupled Electron Transfer.
    Tyson KJ; Davis AN; Norris JL; Bartolotti LJ; Hvastkovs EG; Offenbacher AR
    J Phys Chem Lett; 2020 Apr; 11(7):2408-2413. PubMed ID: 32134666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tryptophan-accelerated electron flow across a protein-protein interface.
    Takematsu K; Williamson H; Blanco-Rodríguez AM; Sokolová L; Nikolovski P; Kaiser JT; Towrie M; Clark IP; Vlček A; Winkler JR; Gray HB
    J Am Chem Soc; 2013 Oct; 135(41):15515-25. PubMed ID: 24032375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The met axial ligand determines the redox potential in Cu(A) sites.
    Ledesma GN; Murgida DH; Ly HK; Wackerbarth H; Ulstrup J; Costa-Filho AJ; Vila AJ
    J Am Chem Soc; 2007 Oct; 129(39):11884-5. PubMed ID: 17845037
    [No Abstract]   [Full Text] [Related]  

  • 24. Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies.
    Mark AE; van Gunsteren WF
    J Mol Biol; 1994 Jul; 240(2):167-76. PubMed ID: 8028000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemically-induced redox switching of a metalloprotein reveals thermodynamic and kinetic heterogeneity, one molecule at a time.
    Akkilic N; van der Grient F; Kamran M; Sanghamitra NJ
    Chem Commun (Camb); 2014 Dec; 50(93):14523-6. PubMed ID: 25302565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical and electronic coupling of the redox copper Azurin on ITO-coated quartz substrate.
    Bizzarri AR; Andolfi L; Taranta M; Cannistraro S
    Biosens Bioelectron; 2008 Oct; 24(2):204-9. PubMed ID: 18457941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes.
    Jensen KP; Bell CB; Clay MD; Solomon EI
    J Am Chem Soc; 2009 Sep; 131(34):12155-71. PubMed ID: 19663382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescent cyclic voltammetry of immobilized azurin: direct observation of thermodynamic and kinetic heterogeneity.
    Salverda JM; Patil AV; Mizzon G; Kuznetsova S; Zauner G; Akkilic N; Canters GW; Davis JJ; Heering HA; Aartsma TJ
    Angew Chem Int Ed Engl; 2010 Aug; 49(33):5776-9. PubMed ID: 20629001
    [No Abstract]   [Full Text] [Related]  

  • 29. Optical investigation of the electron transfer protein azurin-gold nanoparticle system.
    Delfino I; Cannistraro S
    Biophys Chem; 2009 Jan; 139(1):1-7. PubMed ID: 18938024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational protocol to probe the role of solvation effects on the reduction potential of azurin mutants.
    Barone V; De Rienzo F; Langella E; Menziani MC; Rega N; Sola M
    Proteins; 2006 Jan; 62(1):262-9. PubMed ID: 16287118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissociations of copper(II)-containing complexes of aromatic amino acids: radical cations of tryptophan, tyrosine, and phenylalanine.
    Siu CK; Ke Y; Guo Y; Hopkinson AC; Siu KW
    Phys Chem Chem Phys; 2008 Oct; 10(38):5908-18. PubMed ID: 18818845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An internal electron reservoir enhances catalytic CO2 reduction by a semisynthetic enzyme.
    Schneider CR; Shafaat HS
    Chem Commun (Camb); 2016 Aug; 52(64):9889-92. PubMed ID: 27406946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring amino-acid radical chemistry: protein engineering and de novo design.
    Westerlund K; Berry BW; Privett HK; Tommos C
    Biochim Biophys Acta; 2005 Feb; 1707(1):103-16. PubMed ID: 15721609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tryptophan pi-electron system capping a copper(I) binding site--a new organometallic bonding mode in proteins.
    Kühl O; Hinrichs W
    Chembiochem; 2008 Jul; 9(11):1697-9. PubMed ID: 18551497
    [No Abstract]   [Full Text] [Related]  

  • 35. Redox properties of tyrosine and related molecules.
    Warren JJ; Winkler JR; Gray HB
    FEBS Lett; 2012 Mar; 586(5):596-602. PubMed ID: 22210190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theory of Protein Charge Transfer: Electron Transfer between Tryptophan Residue and Active Site of Azurin.
    Sarhangi SM; Matyushov DV
    J Phys Chem B; 2022 Dec; 126(49):10360-10373. PubMed ID: 36459590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proceedings: Electron transfer between azurin and iron hexacyanide.
    Goldberg M; Pecht I
    Isr J Med Sci; 1975 Nov; 11(11):1182. PubMed ID: 1205757
    [No Abstract]   [Full Text] [Related]  

  • 38. Computational studies of the photophysics of neutral and zwitterionic amino acids in an aqueous environment: tyrosine-(H(2)O)(2) and tryptophan-(H(2)O)(2) clusters.
    Sobolewski AL; Shemesh D; Domcke W
    J Phys Chem A; 2009 Jan; 113(3):542-50. PubMed ID: 19099467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The alkaline bleaching of Pseudomonas fluorescens azurin.
    Avigliano L; Guerrieri P; Calabrese L; Vallogini MP; Rotilio G; Mondovì B; Agrò AF
    Ital J Biochem; 1970; 19(2):125-31. PubMed ID: 5486612
    [No Abstract]   [Full Text] [Related]  

  • 40. Density functional theory study of the manganese-containing ribonucleotide reductase from Chlamydia trachomatis: why manganese is needed in the active complex.
    Roos K; Siegbahn PE
    Biochemistry; 2009 Mar; 48(9):1878-87. PubMed ID: 19220003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.