BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 18583612)

  • 1. FGF-dependent mechanosensory organ patterning in zebrafish.
    Nechiporuk A; Raible DW
    Science; 2008 Jun; 320(5884):1774-7. PubMed ID: 18583612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium.
    McGraw HF; Drerup CM; Culbertson MD; Linbo T; Raible DW; Nechiporuk AV
    Development; 2011 Sep; 138(18):3921-30. PubMed ID: 21862556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shroom3 is required downstream of FGF signalling to mediate proneuromast assembly in zebrafish.
    Ernst S; Liu K; Agarwala S; Moratscheck N; Avci ME; Dalle Nogare D; Chitnis AB; Ronneberger O; Lecaudey V
    Development; 2012 Dec; 139(24):4571-81. PubMed ID: 23136387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lef1 regulates Dusp6 to influence neuromast formation and spacing in the zebrafish posterior lateral line primordium.
    Matsuda M; Nogare DD; Somers K; Martin K; Wang C; Chitnis AB
    Development; 2013 Jun; 140(11):2387-97. PubMed ID: 23637337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Notch and Fgf signaling during electrosensory versus mechanosensory lateral line organ development in a non-teleost ray-finned fish.
    Modrell MS; Tidswell ORA; Baker CVH
    Dev Biol; 2017 Nov; 431(1):48-58. PubMed ID: 28818669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HDAC3 Is Required for Posterior Lateral Line Development in Zebrafish.
    He Y; Wang Z; Sun S; Tang D; Li W; Chai R; Li H
    Mol Neurobiol; 2016 Oct; 53(8):5103-17. PubMed ID: 26395281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The zebrafish prospero homolog prox1 is required for mechanosensory hair cell differentiation and functionality in the lateral line.
    Pistocchi A; Feijóo CG; Cabrera P; Villablanca EJ; Allende ML; Cotelli F
    BMC Dev Biol; 2009 Nov; 9():58. PubMed ID: 19948062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cxcl12a induces
    Neelathi UM; Dalle Nogare D; Chitnis AB
    Development; 2018 Jul; 145(14):. PubMed ID: 29945870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lef1-dependent Wnt/β-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development.
    Valdivia LE; Young RM; Hawkins TA; Stickney HL; Cavodeassi F; Schwarz Q; Pullin LM; Villegas R; Moro E; Argenton F; Allende ML; Wilson SW
    Development; 2011 Sep; 138(18):3931-41. PubMed ID: 21862557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atoh1a expression must be restricted by Notch signaling for effective morphogenesis of the posterior lateral line primordium in zebrafish.
    Matsuda M; Chitnis AB
    Development; 2010 Oct; 137(20):3477-87. PubMed ID: 20876657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fgfr-Ras-MAPK signaling is required for apical constriction via apical positioning of Rho-associated kinase during mechanosensory organ formation.
    Harding MJ; Nechiporuk AV
    Development; 2012 Sep; 139(17):3130-5. PubMed ID: 22833124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. sox21a directs lateral line patterning by modulating FGF signaling.
    Ariza-Cosano A; Bensimon-Brito A; Gómez-Skarmeta JL; Bessa J
    Dev Neurobiol; 2015 Jan; 75(1):80-92. PubMed ID: 25044975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and early development of the posterior lateral line system of zebrafish.
    Sarrazin AF; Nuñez VA; Sapède D; Tassin V; Dambly-Chaudière C; Ghysen A
    J Neurosci; 2010 Jun; 30(24):8234-44. PubMed ID: 20554875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A framework for understanding morphogenesis and migration of the zebrafish posterior Lateral Line primordium.
    Dalle Nogare D; Chitnis AB
    Mech Dev; 2017 Dec; 148():69-78. PubMed ID: 28460893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone deacetylase activity is required for embryonic posterior lateral line development.
    He Y; Wu J; Mei H; Yu H; Sun S; Shou J; Li H
    Cell Prolif; 2014 Feb; 47(1):91-104. PubMed ID: 24267956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitotic patterns in the migrating lateral line cells of zebrafish embryos.
    Laguerre L; Ghysen A; Dambly-Chaudière C
    Dev Dyn; 2009 May; 238(5):1042-51. PubMed ID: 19334282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a Ly-6 superfamily gene expressed in lateral line neuromasts in zebrafish.
    Ji D; Li L; Zhang S; Li H
    Dev Genes Evol; 2015 Jan; 225(1):47-53. PubMed ID: 25586305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium.
    Lecaudey V; Cakan-Akdogan G; Norton WH; Gilmour D
    Development; 2008 Aug; 135(16):2695-705. PubMed ID: 18599504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line.
    Grant KA; Raible DW; Piotrowski T
    Neuron; 2005 Jan; 45(1):69-80. PubMed ID: 15629703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Nogo-C2/Nogo receptor complex regulates the morphogenesis of zebrafish lateral line primordium through modulating the expression of dkk1b, a Wnt signal inhibitor.
    Han HW; Chou CM; Chu CY; Cheng CH; Yang CH; Hung CC; Hwang PP; Lee SJ; Liao YF; Huang CJ
    PLoS One; 2014; 9(1):e86345. PubMed ID: 24466042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.