BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 18583612)

  • 21. Chemokine and Fgf signalling act as opposing guidance cues in formation of the lateral line primordium.
    Breau MA; Wilson D; Wilkinson DG; Xu Q
    Development; 2012 Jun; 139(12):2246-53. PubMed ID: 22619392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calnexin is required for zebrafish posterior lateral line development.
    Hung IC; Cherng BW; Hsu WM; Lee SJ
    Int J Dev Biol; 2013; 57(5):427-38. PubMed ID: 23873374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fgf3 and Fgf10a work in concert to promote maturation of the epibranchial placodes in zebrafish.
    McCarroll MN; Nechiporuk AV
    PLoS One; 2013; 8(12):e85087. PubMed ID: 24358375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin.
    Dalle Nogare DE; Natesh N; Vishwasrao HD; Shroff H; Chitnis AB
    Elife; 2020 Nov; 9():. PubMed ID: 33237853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fgf and Hh signalling act on a symmetrical pre-pattern to specify anterior and posterior identity in the zebrafish otic placode and vesicle.
    Hammond KL; Whitfield TT
    Development; 2011 Sep; 138(18):3977-87. PubMed ID: 21831919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The development of lateral line placodes: taking a broader view.
    Piotrowski T; Baker CV
    Dev Biol; 2014 May; 389(1):68-81. PubMed ID: 24582732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis.
    Aman A; Nguyen M; Piotrowski T
    Dev Biol; 2011 Jan; 349(2):470-82. PubMed ID: 20974120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An early Fgf signal required for gene expression in the zebrafish hindbrain primordium.
    Roy NM; Sagerström CG
    Brain Res Dev Brain Res; 2004 Jan; 148(1):27-42. PubMed ID: 14757516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lef1 controls patterning and proliferation in the posterior lateral line system of zebrafish.
    Gamba L; Cubedo N; Lutfalla G; Ghysen A; Dambly-Chaudiere C
    Dev Dyn; 2010 Dec; 239(12):3163-71. PubMed ID: 20981829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dissection of the migrating posterior lateral line primordium during early development in zebrafish.
    Gallardo VE; Liang J; Behra M; Elkahloun A; Villablanca EJ; Russo V; Allende ML; Burgess SM
    BMC Dev Biol; 2010 Dec; 10():120. PubMed ID: 21144052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1.
    Dambly-Chaudière C; Cubedo N; Ghysen A
    BMC Dev Biol; 2007 Mar; 7():23. PubMed ID: 17394634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulf1 modulates BMP signaling and is required for somite morphogenesis and development of the horizontal myoseptum.
    Meyers JR; Planamento J; Ebrom P; Krulewitz N; Wade E; Pownall ME
    Dev Biol; 2013 Jun; 378(2):107-21. PubMed ID: 23583585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wnt/β-catenin interacts with the FGF pathway to promote proliferation and regenerative cell proliferation in the zebrafish lateral line neuromast.
    Tang D; He Y; Li W; Li H
    Exp Mol Med; 2019 May; 51(5):1-16. PubMed ID: 31123246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation.
    Revenu C; Streichan S; Donà E; Lecaudey V; Hufnagel L; Gilmour D
    Development; 2014 Mar; 141(6):1282-91. PubMed ID: 24595289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estrogen receptor ESR1 controls cell migration by repressing chemokine receptor CXCR4 in the zebrafish posterior lateral line system.
    Gamba L; Cubedo N; Ghysen A; Lutfalla G; Dambly-Chaudière C
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6358-63. PubMed ID: 20308561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signaling pathways regulating zebrafish lateral line development.
    Ma EY; Raible DW
    Curr Biol; 2009 May; 19(9):R381-6. PubMed ID: 19439264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The interaction of epithelial Ihha and mesenchymal Fgf10 in zebrafish esophageal and swimbladder development.
    Korzh S; Winata CL; Zheng W; Yang S; Yin A; Ingham P; Korzh V; Gong Z
    Dev Biol; 2011 Nov; 359(2):262-76. PubMed ID: 21925490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zebrafish prion protein PrP2 controls collective migration process during lateral line sensory system development.
    Huc-Brandt S; Hieu N; Imberdis T; Cubedo N; Silhol M; Leighton PL; Domaschke T; Allison WT; Perrier V; Rossel M
    PLoS One; 2014; 9(12):e113331. PubMed ID: 25436888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apical membrane maturation and cellular rosette formation during morphogenesis of the zebrafish lateral line.
    Hava D; Forster U; Matsuda M; Cui S; Link BA; Eichhorst J; Wiesner B; Chitnis A; Abdelilah-Seyfried S
    J Cell Sci; 2009 Mar; 122(Pt 5):687-95. PubMed ID: 19208766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TGFβ1a regulates zebrafish posterior lateral line formation via Smad5 mediated pathway.
    Xing C; Gong B; Xue Y; Han Y; Wang Y; Meng A; Jia S
    J Mol Cell Biol; 2015 Feb; 7(1):48-61. PubMed ID: 25603803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.