BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18583935)

  • 1. Selective chemical inhibition as a tool to study Cdk1 and Cdk2 functions in the cell cycle.
    Krasinska L; Cot E; Fisher D
    Cell Cycle; 2008 Jun; 7(12):1702-8. PubMed ID: 18583935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated chemical biology approach provides insight into Cdk2 functional redundancy and inhibitor sensitivity.
    Echalier A; Cot E; Camasses A; Hodimont E; Hoh F; Jay P; Sheinerman F; Krasinska L; Fisher D
    Chem Biol; 2012 Aug; 19(8):1028-40. PubMed ID: 22921070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cdk2 activity is dispensable for the onset of DNA replication during the first mitotic cycles of the sea urchin early embryo.
    Moreau JL; Marques F; Barakat A; Schatt P; Lozano JC; Peaucellier G; Picard A; Genevière AM
    Dev Biol; 1998 Aug; 200(2):182-97. PubMed ID: 9705226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity.
    Guadagno TM; Newport JW
    Cell; 1996 Jan; 84(1):73-82. PubMed ID: 8548828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5.
    Meijer L; Borgne A; Mulner O; Chong JP; Blow JJ; Inagaki N; Inagaki M; Delcros JG; Moulinoux JP
    Eur J Biochem; 1997 Jan; 243(1-2):527-36. PubMed ID: 9030781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus.
    Krasinska L; Besnard E; Cot E; Dohet C; Méchali M; Lemaitre JM; Fisher D
    EMBO J; 2008 Mar; 27(5):758-69. PubMed ID: 18256689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the Conformational Energy Landscape of CDK1 and CDK2 Suggest a Mechanism for Achieving Selective CDK Inhibition.
    Wood DJ; Korolchuk S; Tatum NJ; Wang LZ; Endicott JA; Noble MEM; Martin MP
    Cell Chem Biol; 2019 Jan; 26(1):121-130.e5. PubMed ID: 30472117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1.
    Vassilev LT; Tovar C; Chen S; Knezevic D; Zhao X; Sun H; Heimbrook DC; Chen L
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10660-5. PubMed ID: 16818887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery and evaluation of dual CDK1 and CDK2 inhibitors.
    Payton M; Chung G; Yakowec P; Wong A; Powers D; Xiong L; Zhang N; Leal J; Bush TL; Santora V; Askew B; Tasker A; Radinsky R; Kendall R; Coats S
    Cancer Res; 2006 Apr; 66(8):4299-308. PubMed ID: 16618755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity.
    Ullah Z; Kohn MJ; Yagi R; Vassilev LT; DePamphilis ML
    Genes Dev; 2008 Nov; 22(21):3024-36. PubMed ID: 18981479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual Cdk1/2 activity after DNA damage promotes senescence.
    Müllers E; Silva Cascales H; Burdova K; Macurek L; Lindqvist A
    Aging Cell; 2017 Jun; 16(3):575-584. PubMed ID: 28345297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclin-Dependent Kinase (CDK) Inhibitors: Structure-Activity Relationships and Insights into the CDK-2 Selectivity of 6-Substituted 2-Arylaminopurines.
    Coxon CR; Anscombe E; Harnor SJ; Martin MP; Carbain B; Golding BT; Hardcastle IR; Harlow LK; Korolchuk S; Matheson CJ; Newell DR; Noble ME; Sivaprakasam M; Tudhope SJ; Turner DM; Wang LZ; Wedge SR; Wong C; Griffin RJ; Endicott JA; Cano C
    J Med Chem; 2017 Mar; 60(5):1746-1767. PubMed ID: 28005359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unmasking the redundancy between Cdk1 and Cdk2 at G2 phase in human cancer cell lines.
    L'Italien L; Tanudji M; Russell L; Schebye XM
    Cell Cycle; 2006 May; 5(9):984-93. PubMed ID: 16687918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdk2 inhibition prolongs G1 phase progression in mouse embryonic stem cells.
    Koledova Z; Kafkova LR; Calabkova L; Krystof V; Dolezel P; Divoky V
    Stem Cells Dev; 2010 Feb; 19(2):181-94. PubMed ID: 19737069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and biological profile of dual Cdk1 and Cdk2 inhibitors.
    Ruetz S; Fabbro D; Zimmermann J; Meyer T; Gray N
    Curr Med Chem Anticancer Agents; 2003 Jan; 3(1):1-14. PubMed ID: 12678910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical reanalysis of the methods that discriminate the activity of CDK2 from CDK1.
    Sakurikar N; Eastman A
    Cell Cycle; 2016 May; 15(9):1184-8. PubMed ID: 26986210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA replication of mitotic chromatin in Xenopus egg extracts.
    Prokhorova TA; Mowrer K; Gilbert CH; Walter JC
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13241-6. PubMed ID: 14597706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors of Cyclin-Dependent Kinase 1/2 for Anticancer Treatment.
    Mou J; Chen D; Deng Y
    Med Chem; 2020; 16(3):307-325. PubMed ID: 31241436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular models of cyclin-dependent kinase 1 complexed with inhibitors.
    Canduri F; Uchoa HB; de Azevedo WF
    Biochem Biophys Res Commun; 2004 Nov; 324(2):661-6. PubMed ID: 15474478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast as a model system to screen purine derivatives against human CDK1 and CDK2 kinases.
    Mayi T; Facca C; Anne S; Vernis L; Huang ME; Legraverend M; Faye G
    J Biotechnol; 2015 Feb; 195():30-6. PubMed ID: 25541464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.