These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 18584080)

  • 1. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry.
    Rosenbluth MJ; Lam WA; Fletcher DA
    Lab Chip; 2008 Jul; 8(7):1062-70. PubMed ID: 18584080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelialized microfluidics for studying microvascular interactions in hematologic diseases.
    Myers DR; Sakurai Y; Tran R; Ahn B; Hardy ET; Mannino R; Kita A; Tsai M; Lam WA
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology.
    Tsai M; Kita A; Leach J; Rounsevell R; Huang JN; Moake J; Ware RE; Fletcher DA; Lam WA
    J Clin Invest; 2012 Jan; 122(1):408-18. PubMed ID: 22156199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Phase Imaging Flow Cytometry for Ultra-Large-Scale Single-Cell Biophysical Phenotyping.
    Lee KCM; Wang M; Cheah KSE; Chan GCF; So HKH; Wong KKY; Tsia KK
    Cytometry A; 2019 May; 95(5):510-520. PubMed ID: 31012276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus.
    Zhang J; Nou XA; Kim H; Scarcelli G
    Lab Chip; 2017 Feb; 17(4):663-670. PubMed ID: 28102402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physical origins of transit time measurements for rapid, single cell mechanotyping.
    Nyberg KD; Scott MB; Bruce SL; Gopinath AB; Bikos D; Mason TG; Kim JW; Choi HS; Rowat AC
    Lab Chip; 2016 Aug; 16(17):3330-9. PubMed ID: 27435631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinched-flow hydrodynamic stretching of single-cells.
    Dudani JS; Gossett DR; Tse HT; Di Carlo D
    Lab Chip; 2013 Sep; 13(18):3728-34. PubMed ID: 23884381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders.
    Guruprasad P; Mannino RG; Caruso C; Zhang H; Josephson CD; Roback JD; Lam WA
    Am J Hematol; 2019 Feb; 94(2):189-199. PubMed ID: 30417938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-of-flight optophoresis analysis of live whole cells in microfluidic channels.
    Zhang H; Tu E; Hagen ND; Schnabel CA; Paliotti MJ; Hoo WS; Nguyen PM; Kohrumel JR; Butler WF; Chachisvillis M; Marchand PJ
    Biomed Microdevices; 2004 Mar; 6(1):11-21. PubMed ID: 15307440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell screening of multiple biophysical properties in leukemia diagnosis from peripheral blood by pure light scattering.
    Dannhauser D; Rossi D; Ripaldi M; Netti PA; Causa F
    Sci Rep; 2017 Oct; 7(1):12666. PubMed ID: 28979002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic electroporative flow cytometry for studying single-cell biomechanics.
    Bao N; Zhan Y; Lu C
    Anal Chem; 2008 Oct; 80(20):7714-9. PubMed ID: 18798650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of microfluidic methods for high-throughput cell deformability measurements.
    Urbanska M; Muñoz HE; Shaw Bagnall J; Otto O; Manalis SR; Di Carlo D; Guck J
    Nat Methods; 2020 Jun; 17(6):587-593. PubMed ID: 32341544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing blood cell mechanics of hematologic processes at the single micron level.
    Ciciliano JC; Abbaspour R; Woodall J; Wu C; Bakir MS; Lam WA
    Lab Chip; 2017 Nov; 17(22):3804-3816. PubMed ID: 29052682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping.
    Petchakup C; Yang H; Gong L; He L; Tay HM; Dalan R; Chung AJ; Li KHH; Hou HW
    Small; 2022 May; 18(18):e2104822. PubMed ID: 35253966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative measurement of quantum dot uptake at the cell population level using microfluidic evanescent-wave-based flow cytometry.
    Wang J; Zhan Y; Bao N; Lu C
    Lab Chip; 2012 Apr; 12(8):1441-5. PubMed ID: 22358224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscope-based label-free microfluidic cytometry.
    Su X; Kirkwood SE; Gupta M; Marquez-Curtis L; Qiu Y; Janowska-Wieczorek A; Rozmus W; Tsui YY
    Opt Express; 2011 Jan; 19(1):387-98. PubMed ID: 21263578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smartphone-imaged microfluidic biochip for measuring CD64 expression from whole blood.
    Ghonge T; Ceylan Koydemir H; Valera E; Berger J; Garcia C; Nawar N; Tiao J; Damhorst GL; Ganguli A; Hassan U; Ozcan A; Bashir R
    Analyst; 2019 Jul; 144(13):3925-3935. PubMed ID: 31094395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Flow Cytometry for Single-Cell Protein Analysis.
    Wu M; Singh AK
    Methods Mol Biol; 2015; 1346():69-83. PubMed ID: 26542716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in microfluidic techniques for single-cell biophysical characterization.
    Zheng Y; Nguyen J; Wei Y; Sun Y
    Lab Chip; 2013 Jul; 13(13):2464-83. PubMed ID: 23681312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.