These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18584083)

  • 1. Chemotaxis in microfluidic devices--a study of flow effects.
    Beta C; Fröhlich T; Bödeker HU; Bodenschatz E
    Lab Chip; 2008 Jul; 8(7):1087-96. PubMed ID: 18584083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial cell polarization and chemotaxis in a microfluidic device.
    Shamloo A; Ma N; Poo MM; Sohn LL; Heilshorn SC
    Lab Chip; 2008 Aug; 8(8):1292-9. PubMed ID: 18651071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotaxis assays of mouse sperm on microfluidic devices.
    Koyama S; Amarie D; Soini HA; Novotny MV; Jacobson SC
    Anal Chem; 2006 May; 78(10):3354-9. PubMed ID: 16689537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and analysis of spatially uniform field electrokinetic flow devices: theory and experiment.
    Skulan AJ; Barrett LM; Singh AK; Cummings EB; Fiechtner GJ
    Anal Chem; 2005 Nov; 77(21):6790-7. PubMed ID: 16255575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of electrical field-induced flow reversal in a microchannel.
    Pirat C; Naso A; van der Wouden EJ; Gardeniers JG; Lohse D; van den Berg A
    Lab Chip; 2008 Jun; 8(6):945-9. PubMed ID: 18497916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydrogel-based microfluidic device for the studies of directed cell migration.
    Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M
    Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-induced thermal effects on spatial DNA melting.
    Crews N; Ameel T; Wittwer C; Gale B
    Lab Chip; 2008 Nov; 8(11):1922-9. PubMed ID: 18941694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroporation of mammalian cells in a microfluidic channel with geometric variation.
    Wang HY; Lu C
    Anal Chem; 2006 Jul; 78(14):5158-64. PubMed ID: 16841942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of tumor cells using size and deformation.
    Mohamed H; Murray M; Turner JN; Caggana M
    J Chromatogr A; 2009 Nov; 1216(47):8289-95. PubMed ID: 19497576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow.
    Zhou Y; Wang Y; Mukherjee T; Lin Q
    Lab Chip; 2009 May; 9(10):1439-48. PubMed ID: 19417912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toolbox for the design of optimized microfluidic components.
    Mott DR; Howell PB; Golden JP; Kaplan CR; Ligler FS; Oran ES
    Lab Chip; 2006 Apr; 6(4):540-9. PubMed ID: 16572217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic gradient platforms for controlling cellular behavior.
    Chung BG; Choo J
    Electrophoresis; 2010 Sep; 31(18):3014-27. PubMed ID: 20734372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic particle filter with adjustable effective pore size for automated sample preparation.
    Jung B; Fisher K; Ness KD; Rose KA; Mariella RP
    Anal Chem; 2008 Nov; 80(22):8447-52. PubMed ID: 18847218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels.
    Mosadegh B; Huang C; Park JW; Shin HS; Chung BG; Hwang SK; Lee KH; Kim HJ; Brody J; Jeon NL
    Langmuir; 2007 Oct; 23(22):10910-2. PubMed ID: 17910490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, modeling and characterization of microfluidic architectures for high flow rate, small footprint microfluidic systems.
    Saias L; Autebert J; Malaquin L; Viovy JL
    Lab Chip; 2011 Mar; 11(5):822-32. PubMed ID: 21240403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial chemotaxis transverse to axial flow in a microfluidic channel.
    Lanning LM; Ford RM; Long T
    Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous flow separations in microfluidic devices.
    Pamme N
    Lab Chip; 2007 Dec; 7(12):1644-59. PubMed ID: 18030382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.