These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18584100)

  • 1. Potentiometric platform for the quantification of cellular potassium efflux.
    Generelli S; Jacquemart R; de Rooij NF; Jolicoeur M; Koudelka-Hep M; Guenat OT
    Lab Chip; 2008 Jul; 8(7):1210-5. PubMed ID: 18584100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic cell culture platform for real-time cellular imaging.
    Hsieh CC; Huang SB; Wu PC; Shieh DB; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):903-13. PubMed ID: 19370417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-based high content screening using an integrated microfluidic device.
    Ye N; Qin J; Shi W; Liu X; Lin B
    Lab Chip; 2007 Dec; 7(12):1696-704. PubMed ID: 18030389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ measurement of cellular microenvironments in a microfluidic device.
    Lin Z; Cherng-Wen T; Roy P; Trau D
    Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell migration into scaffolds under co-culture conditions in a microfluidic platform.
    Chung S; Sudo R; Mack PJ; Wan CR; Vickerman V; Kamm RD
    Lab Chip; 2009 Jan; 9(2):269-75. PubMed ID: 19107284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity.
    Wang HY; Lu C
    Biotechnol Bioeng; 2006 Dec; 95(6):1116-25. PubMed ID: 16817188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-dependent K+ efflux regulates deoxycholate-induced apoptosis of BHK-21 and Caco-2 cells.
    Gerbino A; Ranieri M; Lupo S; Caroppo R; Debellis L; Maiellaro I; Caratozzolo MF; Lopez F; Colella M
    Gastroenterology; 2009 Sep; 137(3):955-64, 964.e1-2. PubMed ID: 19328800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device.
    Ye N; Qin J; Liu X; Shi W; Lin B
    Electrophoresis; 2007 Apr; 28(7):1146-53. PubMed ID: 17330224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microvalve-assisted patterning platform for measuring cellular dynamics based on 3D cell culture.
    Kim MS; Lee W; Kim YC; Park JK
    Biotechnol Bioeng; 2008 Dec; 101(5):1005-13. PubMed ID: 18942775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of an all-solid-state potentiometric biosensor array microfluidic device for multiple ion analysis.
    Liao WY; Weng CH; Lee GB; Chou TC
    Lab Chip; 2006 Oct; 6(10):1362-8. PubMed ID: 17102850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicompartmented microfluidic device for characterization of dose-dependent cadmium cytotoxicity in BALB/3T3 fibroblast cells.
    Mahto SK; Yoon TH; Shin H; Rhee SW
    Biomed Microdevices; 2009 Apr; 11(2):401-11. PubMed ID: 18982453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully integrated microfluidic platform enabling automated phosphoprofiling of macrophage response.
    Srivastava N; Brennan JS; Renzi RF; Wu M; Branda SS; Singh AK; Herr AE
    Anal Chem; 2009 May; 81(9):3261-9. PubMed ID: 19323537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of low-picomolar concentrations of TNF-alpha in serum using the dual-network microfluidic ELISA platform.
    Herrmann M; Veres T; Tabrizian M
    Anal Chem; 2008 Jul; 80(13):5160-7. PubMed ID: 18473486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoretic capture of mammalian cells using transparent indium tin oxide electrodes in microfluidic systems.
    Sankaran B; Racic M; Tona A; Rao MV; Gaitan M; Forry SP
    Electrophoresis; 2008 Dec; 29(24):5047-54. PubMed ID: 19130589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Drug sensitivity and cellular potassium release of cancer cells].
    Iwagaki H; Fuchimoto S; Aoki H; Miyake M; Orita K
    Gan To Kagaku Ryoho; 1988 Oct; 15(10):2889-93. PubMed ID: 3178238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells.
    Spégel C; Heiskanen A; Pedersen S; Emnéus J; Ruzgas T; Taboryski R
    Lab Chip; 2008 Feb; 8(2):323-9. PubMed ID: 18231673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic electroporative flow cytometry for studying single-cell biomechanics.
    Bao N; Zhan Y; Lu C
    Anal Chem; 2008 Oct; 80(20):7714-9. PubMed ID: 18798650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing drug-induced minor morphological changes from major cellular damage via label-free impedimetric toxicity screening.
    Meissner R; Eker B; Kasi H; Bertsch A; Renaud P
    Lab Chip; 2011 Jul; 11(14):2352-61. PubMed ID: 21647498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs.
    Sung JH; Shuler ML
    Lab Chip; 2009 May; 9(10):1385-94. PubMed ID: 19417905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of three methods for oxidative stress-induced potassium efflux measurement.
    Lahet JJ; Lenfant F; Courderot-Masuyer C; Bouyer F; Lecordier J; Bureau A; Freysz M; Chaillot B
    Biomed Pharmacother; 2007 Aug; 61(7):423-6. PubMed ID: 17629446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.