These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18584316)

  • 21. Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family.
    Gao X; Wang J; Yu DQ; Bian F; Xie BB; Chen XL; Zhou BC; Lai LH; Wang ZX; Wu JW; Zhang YZ
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17569-74. PubMed ID: 20876133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of conversion of the zinc-binding motif sequence of thermolysin, HEXXH, to that of dipeptidyl peptidase III, HEXXXH, on the activity and stability of thermolysin.
    Menach E; Hashida Y; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2013; 77(9):1901-6. PubMed ID: 24018667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Destructive twisting of neutral metalloproteases: the catalysis mechanism of the Dispase autolysis-inducing protein from Streptomyces mobaraensis DSM 40487.
    Fiebig D; Storka J; Roeder M; Meyners C; Schmelz S; Blankenfeldt W; Scrima A; Kolmar H; Fuchsbauer HL
    FEBS J; 2018 Nov; 285(22):4246-4264. PubMed ID: 30171661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning and expression in Bacillus subtilis of the npr gene from Bacillus thermoproteolyticus Rokko coding for the thermostable metalloprotease thermolysin.
    O'Donohue MJ; Roques BP; Beaumont A
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):599-603. PubMed ID: 8002967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural basis for the action of thermolysin.
    Tronrud DE; Roderick SL; Matthews BW
    Matrix Suppl; 1992; 1():107-11. PubMed ID: 1480010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus.
    Wetmore DR; Wong SL; Roche RS
    Mol Microbiol; 1992 Jun; 6(12):1593-604. PubMed ID: 1495388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family.
    Adekoya OA; Helland R; Willassen NP; Sylte I
    Proteins; 2006 Feb; 62(2):435-49. PubMed ID: 16294337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutational effect for stability in a conserved region of thermolysin.
    Matsumiya Y; Nishikawa K; Inouye K; Kubo M
    Lett Appl Microbiol; 2005; 40(5):329-34. PubMed ID: 15836734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide based inhibitor design.
    Musyoka TM; Njuguna JN; Tastan Bishop Ö
    Malar J; 2019 May; 18(1):159. PubMed ID: 31053072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity.
    Volkmann G; Liu XQ
    FEBS J; 2011 Sep; 278(18):3431-46. PubMed ID: 21787376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding.
    Xie BB; Bian F; Chen XL; He HL; Guo J; Gao X; Zeng YX; Chen B; Zhou BC; Zhang YZ
    J Biol Chem; 2009 Apr; 284(14):9257-69. PubMed ID: 19181663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An exocellular thermolysin-like metalloprotease produced by Vibrio fluvialis: purification, characterization, and gene cloning.
    Miyoshi S; Sonoda Y; Wakiyama H; Rahman MM; Tomochika K; Shinoda S; Yamamoto S; Tobe K
    Microb Pathog; 2002 Sep; 33(3):127-34. PubMed ID: 12220989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. General function of N-terminal propeptide on assisting protein folding and inhibiting catalytic activity based on observations with a chimeric thermolysin-like protease.
    Tang B; Nirasawa S; Kitaoka M; Marie-Claire C; Hayashi K
    Biochem Biophys Res Commun; 2003 Feb; 301(4):1093-8. PubMed ID: 12589825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of site-directed mutagenesis of Asn116 in the β-hairpin of the N-terminal domain of thermolysin on its activity and stability.
    Menach E; Yasukawa K; Inouye K
    J Biochem; 2012 Sep; 152(3):231-9. PubMed ID: 22648563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry.
    Liu YH; Konermann L
    Biochemistry; 2008 Jun; 47(24):6342-51. PubMed ID: 18494500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases.
    Vriend G; Eijsink V
    J Comput Aided Mol Des; 1993 Aug; 7(4):367-96. PubMed ID: 8229092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel neutral protease from Thermoactinomyces species 27a: sequencing of the gene, purification, and characterization of the enzyme.
    Zabolotskaya MV; Demidyuk IV; Akimkina TV; Kostrov SV
    Protein J; 2004 Oct; 23(7):483-92. PubMed ID: 15635941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Survey of amino-terminal proteolytic cleavage sites in mitochondrial precursor proteins: leader peptides cleaved by two matrix proteases share a three-amino acid motif.
    Hendrick JP; Hodges PE; Rosenberg LE
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4056-60. PubMed ID: 2657736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus leniusculus.
    Wang R; Lee SY; Cerenius L; Söderhäll K
    Eur J Biochem; 2001 Feb; 268(4):895-902. PubMed ID: 11179955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of human tissue kallikrein produced in Escherichia coli: biochemical comparison to the enzymatically inactive prokallikrein and methionyl kallikrein.
    Lu HS; Hsu YR; Lu LI; Ruff D; Lyons D; Lin FK
    Protein Expr Purif; 1996 Sep; 8(2):215-26. PubMed ID: 8812865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.